DEFINITION getl_drop_conf_ge()
TYPE =
∀i:nat
.∀a:C
.∀c:C
.getl i c a
→∀e:C
.∀h:nat
.∀d:nat
.(drop h d c e)→(le (plus d h) i)→(getl (minus i h) e a)
BODY =
assume i: nat
assume a: C
assume c: C
suppose H: getl i c a
assume e: C
assume h: nat
assume d: nat
suppose H0: drop h d c e
suppose H1: le (plus d h) i
(H2)
by (getl_gen_all . . . H)
ex2 C λe:C.drop i O c e λe:C.clear e a
end of H2
we proceed by induction on H2 to prove getl (minus i h) e a
case ex_intro2 : x:C H3:drop i O c x H4:clear x a ⇒
the thesis becomes getl (minus i h) e a
by (drop_conf_ge . . . H3 . . . H0 H1)
we proved drop (minus i h) O e x
by (getl_intro . . . . previous H4)
getl (minus i h) e a
we proved getl (minus i h) e a
we proved
∀i:nat
.∀a:C
.∀c:C
.getl i c a
→∀e:C
.∀h:nat
.∀d:nat
.(drop h d c e)→(le (plus d h) i)→(getl (minus i h) e a)