DEFINITION drop_getl_trans_ge()
TYPE =
∀i:nat
.∀c1:C
.∀c2:C
.∀d:nat
.∀h:nat
.drop h d c1 c2
→∀e2:C.(getl i c2 e2)→(le d i)→(getl (plus i h) c1 e2)
BODY =
assume i: nat
assume c1: C
assume c2: C
assume d: nat
assume h: nat
suppose H: drop h d c1 c2
assume e2: C
suppose H0: getl i c2 e2
suppose H1: le d i
(H2)
by (getl_gen_all . . . H0)
ex2 C λe:C.drop i O c2 e λe:C.clear e e2
end of H2
we proceed by induction on H2 to prove getl (plus i h) c1 e2
case ex_intro2 : x:C H3:drop i O c2 x H4:clear x e2 ⇒
the thesis becomes getl (plus i h) c1 e2
by (drop_trans_ge . . . . . H . H3 H1)
we proved drop (plus i h) O c1 x
by (getl_intro . . . . previous H4)
getl (plus i h) c1 e2
we proved getl (plus i h) c1 e2
we proved
∀i:nat
.∀c1:C
.∀c2:C
.∀d:nat
.∀h:nat
.drop h d c1 c2
→∀e2:C.(getl i c2 e2)→(le d i)→(getl (plus i h) c1 e2)