DEFINITION flt_wf__q_ind()
TYPE =
∀P:C→T→Prop
.∀n:nat
.λP0:C→T→Prop.λn0:nat.∀c:C.∀t:T.(eq nat (fweight c t) n0)→(P0 c t)
P
n
→∀c:C.∀t:T.(P c t)
BODY =
we must prove
∀P:C→T→Prop
.∀n:nat
.λP0:C→T→Prop.λn0:nat.∀c:C.∀t:T.(eq nat (fweight c t) n0)→(P0 c t)
P
n
→∀c:C.∀t:T.(P c t)
or equivalently
∀P:C→T→Prop
.(∀n:nat.∀c:C.∀t:T.(eq nat (fweight c t) n)→(P c t))→∀c:C.∀t:T.(P c t)
assume P: C→T→Prop
suppose H: ∀n:nat.∀c:C.∀t:T.(eq nat (fweight c t) n)→(P c t)
assume c: C
assume t: T
by (refl_equal . .)
we proved eq nat (fweight c t) (fweight c t)
by (H . . . previous)
we proved P c t
we proved
∀P:C→T→Prop
.(∀n:nat.∀c:C.∀t:T.(eq nat (fweight c t) n)→(P c t))→∀c:C.∀t:T.(P c t)
that is equivalent to
∀P:C→T→Prop
.∀n:nat
.λP0:C→T→Prop.λn0:nat.∀c:C.∀t:T.(eq nat (fweight c t) n0)→(P0 c t)
P
n
→∀c:C.∀t:T.(P c t)