DEFINITION flt_wf__q_ind()
TYPE =
       P:CTProp
         .n:nat
             .λP0:CTProp.λn0:nat.c:C.t:T.(eq nat (fweight c t) n0)(P0 c t)
               P
               n
           c:C.t:T.(P c t)
BODY =
       we must prove 
             P:CTProp
               .n:nat
                   .λP0:CTProp.λn0:nat.c:C.t:T.(eq nat (fweight c t) n0)(P0 c t)
                     P
                     n
                 c:C.t:T.(P c t)
       or equivalently 
             P:CTProp
               .(n:nat.c:C.t:T.(eq nat (fweight c t) n)(P c t))c:C.t:T.(P c t)
        assume PCTProp
        suppose Hn:nat.c:C.t:T.(eq nat (fweight c t) n)(P c t)
        assume cC
        assume tT
          by (refl_equal . .)
          we proved eq nat (fweight c t) (fweight c t)
          by (H . . . previous)
          we proved P c t
       we proved 
          P:CTProp
            .(n:nat.c:C.t:T.(eq nat (fweight c t) n)(P c t))c:C.t:T.(P c t)
       that is equivalent to 
          P:CTProp
            .n:nat
                .λP0:CTProp.λn0:nat.c:C.t:T.(eq nat (fweight c t) n0)(P0 c t)
                  P
                  n
              c:C.t:T.(P c t)