DEFINITION ex1_arity()
TYPE =
∀g:G.(arity g ex1_c ex1_t (ASort O O))
BODY =
assume g: G
(h1)
(h1)
by (getl_refl . . .)
getl
O
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
end of h1
(h2)
(h1)
by (getl_refl . . .)
getl
O
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
end of h1
(h2)
(h1)
by (arity_sort . . .)
arity
g
CHead (CSort O) (Bind Abst) (TSort O)
TSort O
ASort O O
end of h1
(h2)
by (ex1__leq_sort_SS . . .)
leq g (ASort O O) (asucc g (asucc g (ASort (S (S O)) O)))
end of h2
by (arity_repl . . . . h1 . h2)
arity
g
CHead (CSort O) (Bind Abst) (TSort O)
TSort O
asucc g (asucc g (ASort (S (S O)) O))
end of h2
by (arity_abst . . . . . h1 . h2)
arity
g
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
TLRef O
asucc g (ASort (S (S O)) O)
end of h2
by (arity_abst . . . . . h1 . h2)
arity
g
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
TLRef O
ASort (S (S O)) O
end of h1
(h2)
(h1)
(h1)
(h1)
by (clear_bind . . .)
clear
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
end of h1
(h2)
by (getl_refl . . .)
we proved
getl
O
CHead (CSort O) (Bind Abst) (TSort O)
CHead (CSort O) (Bind Abst) (TSort O)
that is equivalent to
getl
r (Bind Abst) O
CHead (CSort O) (Bind Abst) (TSort O)
CHead (CSort O) (Bind Abst) (TSort O)
by (getl_head . . . . previous .)
getl
S O
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
CHead (CSort O) (Bind Abst) (TSort O)
end of h2
by (getl_clear_bind . . . . h1 . . h2)
getl
S (S O)
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
CHead (CSort O) (Bind Abst) (TSort O)
end of h1
(h2)
(h1)
by (arity_sort . . .)
arity g (CSort O) (TSort O) (ASort O O)
end of h1
(h2)
by (ex1__leq_sort_SS . . .)
leq g (ASort O O) (asucc g (asucc g (ASort (S (S O)) O)))
end of h2
by (arity_repl . . . . h1 . h2)
arity
g
CSort O
TSort O
asucc g (asucc g (ASort (S (S O)) O))
end of h2
by (arity_abst . . . . . h1 . h2)
arity
g
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
TLRef (S (S O))
asucc g (ASort (S (S O)) O)
end of h1
(h2)
by (arity_sort . . .)
arity
g
CHead
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
Bind Abst
TLRef (S (S O))
TSort O
ASort O O
end of h2
by (arity_head . . . . h1 . . h2)
arity
g
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
THead (Bind Abst) (TLRef (S (S O))) (TSort O)
AHead (ASort (S (S O)) O) (ASort O O)
end of h2
by (arity_appl . . . . h1 . . h2)
we proved
arity
g
CHead
CHead
CHead (CSort O) (Bind Abst) (TSort O)
Bind Abst
TSort O
Bind Abst
TLRef O
THead
Flat Appl
TLRef O
THead (Bind Abst) (TLRef (S (S O))) (TSort O)
ASort O O
that is equivalent to arity g ex1_c ex1_t (ASort O O)
we proved ∀g:G.(arity g ex1_c ex1_t (ASort O O))