DEFINITION csubv_refl()
TYPE =
∀c:C.(csubv c c)
BODY =
assume c: C
we proceed by induction on c to prove csubv c c
case CSort : n:nat ⇒
the thesis becomes csubv (CSort n) (CSort n)
by (csubv_sort .)
csubv (CSort n) (CSort n)
case CHead ⇒
we need to prove ∀c0:C.(csubv c0 c0)→∀k:K.∀t:T.(csubv (CHead c0 k t) (CHead c0 k t))
assume c0: C
suppose H: csubv c0 c0
assume k: K
we proceed by induction on k to prove ∀t:T.(csubv (CHead c0 k t) (CHead c0 k t))
case Bind : b:B ⇒
the thesis becomes ∀t:T.(csubv (CHead c0 (Bind b) t) (CHead c0 (Bind b) t))
assume t: T
by (csubv_bind_same . . H . . .)
we proved csubv (CHead c0 (Bind b) t) (CHead c0 (Bind b) t)
∀t:T.(csubv (CHead c0 (Bind b) t) (CHead c0 (Bind b) t))
case Flat : f:F ⇒
the thesis becomes ∀t:T.(csubv (CHead c0 (Flat f) t) (CHead c0 (Flat f) t))
assume t: T
by (csubv_flat . . H . . . .)
we proved csubv (CHead c0 (Flat f) t) (CHead c0 (Flat f) t)
∀t:T.(csubv (CHead c0 (Flat f) t) (CHead c0 (Flat f) t))
we proved ∀t:T.(csubv (CHead c0 k t) (CHead c0 k t))
∀c0:C.(csubv c0 c0)→∀k:K.∀t:T.(csubv (CHead c0 k t) (CHead c0 k t))
we proved csubv c c
we proved ∀c:C.(csubv c c)