DEFINITION csubv_ind()
TYPE =
∀P:C→C→Prop
.∀n:nat.(P (CSort n) (CSort n))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1
→∀t:T.∀t1:T.(P (CHead c (Bind Void) t) (CHead c1 (Bind Void) t1)))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1
→∀b:B
.not (eq B b Void)
→∀b1:B.∀t:T.∀t1:T.(P (CHead c (Bind b) t) (CHead c1 (Bind b1) t1)))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1)→∀f:F.∀f1:F.∀t:T.∀t1:T.(P (CHead c (Flat f) t) (CHead c1 (Flat f1) t1))
→∀c:C.∀c1:C.(csubv c c1)→(P c c1))))
BODY =
Show proof