DEFINITION csubv_ind()
TYPE =
∀P:C→C→Prop
.∀n:nat.(P (CSort n) (CSort n))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1
→∀t:T.∀t1:T.(P (CHead c (Bind Void) t) (CHead c1 (Bind Void) t1)))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1
→∀b:B
.not (eq B b Void)
→∀b1:B.∀t:T.∀t1:T.(P (CHead c (Bind b) t) (CHead c1 (Bind b1) t1)))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1)→∀f:F.∀f1:F.∀t:T.∀t1:T.(P (CHead c (Flat f) t) (CHead c1 (Flat f1) t1))
→∀c:C.∀c1:C.(csubv c c1)→(P c c1))))
BODY =
assume P: C→C→Prop
suppose H: ∀n:nat.(P (CSort n) (CSort n))
suppose H1:
∀c:C
.∀c1:C
.csubv c c1
→(P c c1
→∀t:T.∀t1:T.(P (CHead c (Bind Void) t) (CHead c1 (Bind Void) t1)))
suppose H2:
∀c:C
.∀c1:C
.csubv c c1
→(P c c1
→∀b:B
.not (eq B b Void)
→∀b1:B.∀t:T.∀t1:T.(P (CHead c (Bind b) t) (CHead c1 (Bind b1) t1)))
suppose H3:
∀c:C
.∀c1:C
.csubv c c1
→(P c c1)→∀f:F.∀f1:F.∀t:T.∀t1:T.(P (CHead c (Flat f) t) (CHead c1 (Flat f1) t1))
(aux) by well-founded reasoning we prove ∀c:C.∀c1:C.(csubv c c1)→(P c c1)
assume c: C
assume c1: C
suppose H4: csubv c c1
by cases on H4 we prove P c c1
case csubv_sort n:nat ⇒
the thesis becomes P (CSort n) (CSort n)
by (H .)
P (CSort n) (CSort n)
case csubv_void c2:C c3:C H5:csubv c2 c3 t:T t1:T ⇒
the thesis becomes P (CHead c2 (Bind Void) t) (CHead c3 (Bind Void) t1)
by (aux . . H5)
we proved P c2 c3
by (H1 . . H5 previous . .)
P (CHead c2 (Bind Void) t) (CHead c3 (Bind Void) t1)
case csubv_bind c2:C c3:C H5:csubv c2 c3 b:B H6:not (eq B b Void) b1:B t:T t1:T ⇒
the thesis becomes P (CHead c2 (Bind b) t) (CHead c3 (Bind b1) t1)
by (aux . . H5)
we proved P c2 c3
by (H2 . . H5 previous . H6 . . .)
P (CHead c2 (Bind b) t) (CHead c3 (Bind b1) t1)
case csubv_flat c2:C c3:C H5:csubv c2 c3 f:F f1:F t:T t1:T ⇒
the thesis becomes P (CHead c2 (Flat f) t) (CHead c3 (Flat f1) t1)
by (aux . . H5)
we proved P c2 c3
by (H3 . . H5 previous . . . .)
P (CHead c2 (Flat f) t) (CHead c3 (Flat f1) t1)
we proved P c c1
∀c:C.∀c1:C.(csubv c c1)→(P c c1)
done
consider aux
we proved ∀c:C.∀c1:C.(csubv c c1)→(P c c1)
we proved
∀P:C→C→Prop
.∀n:nat.(P (CSort n) (CSort n))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1
→∀t:T.∀t1:T.(P (CHead c (Bind Void) t) (CHead c1 (Bind Void) t1)))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1
→∀b:B
.not (eq B b Void)
→∀b1:B.∀t:T.∀t1:T.(P (CHead c (Bind b) t) (CHead c1 (Bind b1) t1)))
→(∀c:C
.∀c1:C
.csubv c c1
→(P c c1)→∀f:F.∀f1:F.∀t:T.∀t1:T.(P (CHead c (Flat f) t) (CHead c1 (Flat f1) t1))
→∀c:C.∀c1:C.(csubv c c1)→(P c c1))))