DEFINITION csubt_ty3_ld()
TYPE =
∀g:G
.∀c:C
.∀u:T
.∀v:T
.ty3 g c u v
→∀t1:T
.∀t2:T
.(ty3 g (CHead c (Bind Abst) v) t1 t2)→(ty3 g (CHead c (Bind Abbr) u) t1 t2)
BODY =
assume g: G
assume c: C
assume u: T
assume v: T
suppose H: ty3 g c u v
assume t1: T
assume t2: T
suppose H0: ty3 g (CHead c (Bind Abst) v) t1 t2
by (csubt_refl . .)
we proved csubt g c c
by (csubt_abst . . . previous . . H H)
we proved csubt g (CHead c (Bind Abst) v) (CHead c (Bind Abbr) u)
by (csubt_ty3 . . . . H0 . previous)
we proved ty3 g (CHead c (Bind Abbr) u) t1 t2
we proved
∀g:G
.∀c:C
.∀u:T
.∀v:T
.ty3 g c u v
→∀t1:T
.∀t2:T
.(ty3 g (CHead c (Bind Abst) v) t1 t2)→(ty3 g (CHead c (Bind Abbr) u) t1 t2)