DEFINITION csubt_pc3()
TYPE =
∀g:G.∀c1:C.∀t1:T.∀t2:T.(pc3 c1 t1 t2)→∀c2:C.(csubt g c1 c2)→(pc3 c2 t1 t2)
BODY =
assume g: G
assume c1: C
assume t1: T
assume t2: T
suppose H: pc3 c1 t1 t2
(h1)
assume t: T
assume c2: C
suppose : csubt g c1 c2
by (pc3_refl . .)
we proved pc3 c2 t t
∀t:T.∀c2:C.(csubt g c1 c2)→(pc3 c2 t t)
end of h1
(h2)
assume t0: T
assume t3: T
suppose H0: pr2 c1 t0 t3
assume t4: T
suppose : pc3 c1 t3 t4
suppose H2: ∀c2:C.(csubt g c1 c2)→(pc3 c2 t3 t4)
assume c2: C
suppose H3: csubt g c1 c2
(h1)
by (csubt_pr2 . . . . H0 . H3)
we proved pr2 c2 t0 t3
by (pc3_pr2_r . . . previous)
pc3 c2 t0 t3
end of h1
(h2) by (H2 . H3) we proved pc3 c2 t3 t4
by (pc3_t . . . h1 . h2)
we proved pc3 c2 t0 t4
∀t0:T
.∀t3:T
.pr2 c1 t0 t3
→∀t4:T.(pc3 c1 t3 t4)→(∀c2:C.(csubt g c1 c2)→(pc3 c2 t3 t4))→∀c2:C.(csubt g c1 c2)→(pc3 c2 t0 t4)
end of h2
(h3)
assume t0: T
assume t3: T
suppose H0: pr2 c1 t0 t3
assume t4: T
suppose : pc3 c1 t0 t4
suppose H2: ∀c2:C.(csubt g c1 c2)→(pc3 c2 t0 t4)
assume c2: C
suppose H3: csubt g c1 c2
(h1)
by (csubt_pr2 . . . . H0 . H3)
we proved pr2 c2 t0 t3
by (pc3_pr2_x . . . previous)
pc3 c2 t3 t0
end of h1
(h2) by (H2 . H3) we proved pc3 c2 t0 t4
by (pc3_t . . . h1 . h2)
we proved pc3 c2 t3 t4
∀t0:T
.∀t3:T
.pr2 c1 t0 t3
→∀t4:T.(pc3 c1 t0 t4)→(∀c2:C.(csubt g c1 c2)→(pc3 c2 t0 t4))→∀c2:C.(csubt g c1 c2)→(pc3 c2 t3 t4)
end of h3
by (pc3_ind_left . . h1 h2 h3 . . H)
we proved ∀c2:C.(csubt g c1 c2)→(pc3 c2 t1 t2)
we proved ∀g:G.∀c1:C.∀t1:T.∀t2:T.(pc3 c1 t1 t2)→∀c2:C.(csubt g c1 c2)→(pc3 c2 t1 t2)