DEFINITION csubt_getl_abst()
TYPE =
       g:G
         .c1:C
           .d1:C
             .t:T
               .n:nat
                 .getl n c1 (CHead d1 (Bind Abst) t)
                   c2:C
                        .csubt g c1 c2
                          (or
                               ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                               ex4_2
                                 C
                                 T
                                 λd2:C.λ:T.csubt g d1 d2
                                 λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                 λ:C.λu:T.ty3 g d1 u t
                                 λd2:C.λu:T.ty3 g d2 u t)
BODY =
        assume gG
        assume c1C
        assume d1C
        assume tT
        assume nnat
        suppose Hgetl n c1 (CHead d1 (Bind Abst) t)
          (H0
             by (getl_gen_all . . . H)
ex2 C λe:C.drop n O c1 e λe:C.clear e (CHead d1 (Bind Abst) t)
          end of H0
          we proceed by induction on H0 to prove 
             c2:C
               .csubt g c1 c2
                 (or
                      ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                      ex4_2
                        C
                        T
                        λd2:C.λ:T.csubt g d1 d2
                        λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                        λ:C.λu:T.ty3 g d1 u t
                        λd2:C.λu:T.ty3 g d2 u t)
             case ex_intro2 : x:C H1:drop n O c1 x H2:clear x (CHead d1 (Bind Abst) t) 
                the thesis becomes 
                c2:C
                  .csubt g c1 c2
                    (or
                         ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                         ex4_2
                           C
                           T
                           λd2:C.λ:T.csubt g d1 d2
                           λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                           λ:C.λu:T.ty3 g d1 u t
                           λd2:C.λu:T.ty3 g d2 u t)
                      assume n0nat
                       suppose drop n O c1 (CSort n0)
                       suppose H4clear (CSort n0) (CHead d1 (Bind Abst) t)
                         by (clear_gen_sort . . H4 .)
                         we proved 
                            c2:C
                              .csubt g c1 c2
                                (or
                                     ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                     ex4_2
                                       C
                                       T
                                       λd2:C.λ:T.csubt g d1 d2
                                       λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                       λ:C.λu:T.ty3 g d1 u t
                                       λd2:C.λu:T.ty3 g d2 u t)

                         drop n O c1 (CSort n0)
                           H4:clear (CSort n0) (CHead d1 (Bind Abst) t)
                                .c2:C
                                  .csubt g c1 c2
                                    (or
                                         ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                         ex4_2
                                           C
                                           T
                                           λd2:C.λ:T.csubt g d1 d2
                                           λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                           λ:C.λu:T.ty3 g d1 u t
                                           λd2:C.λu:T.ty3 g d2 u t)
                    assume x0C
                    suppose 
                       drop n O c1 x0
                         (clear x0 (CHead d1 (Bind Abst) t)
                              c2:C
                                   .csubt g c1 c2
                                     (or
                                          ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                          ex4_2
                                            C
                                            T
                                            λd2:C.λ:T.csubt g d1 d2
                                            λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                            λ:C.λu:T.ty3 g d1 u t
                                            λd2:C.λu:T.ty3 g d2 u t))
                    assume kK
                       assume t0T
                       suppose H3drop n O c1 (CHead x0 k t0)
                       suppose H4clear (CHead x0 k t0) (CHead d1 (Bind Abst) t)
                            assume bB
                             suppose H5drop n O c1 (CHead x0 (Bind b) t0)
                             suppose H6clear (CHead x0 (Bind b) t0) (CHead d1 (Bind Abst) t)
                               (H7
                                  by (clear_gen_bind . . . . H6)
                                  we proved eq C (CHead d1 (Bind Abst) t) (CHead x0 (Bind b) t0)
                                  by (f_equal . . . . . previous)
                                  we proved 
                                     eq
                                       C
                                       <λ:C.C> CASE CHead d1 (Bind Abst) t OF CSort d1 | CHead c  c
                                       <λ:C.C> CASE CHead x0 (Bind b) t0 OF CSort d1 | CHead c  c

                                     eq
                                       C
                                       λe:C.<λ:C.C> CASE e OF CSort d1 | CHead c  c (CHead d1 (Bind Abst) t)
                                       λe:C.<λ:C.C> CASE e OF CSort d1 | CHead c  c (CHead x0 (Bind b) t0)
                               end of H7
                               (h1
                                  (H8
                                     by (clear_gen_bind . . . . H6)
                                     we proved eq C (CHead d1 (Bind Abst) t) (CHead x0 (Bind b) t0)
                                     by (f_equal . . . . . previous)
                                     we proved 
                                        eq
                                          B
                                          <λ:C.B>
                                            CASE CHead d1 (Bind Abst) t OF
                                              CSort Abst
                                            | CHead  k0 <λ:K.B> CASE k0 OF Bind b0b0 | Flat Abst
                                          <λ:C.B>
                                            CASE CHead x0 (Bind b) t0 OF
                                              CSort Abst
                                            | CHead  k0 <λ:K.B> CASE k0 OF Bind b0b0 | Flat Abst

                                        eq
                                          B
                                          λe:C
                                              .<λ:C.B>
                                                CASE e OF
                                                  CSort Abst
                                                | CHead  k0 <λ:K.B> CASE k0 OF Bind b0b0 | Flat Abst
                                            CHead d1 (Bind Abst) t
                                          λe:C
                                              .<λ:C.B>
                                                CASE e OF
                                                  CSort Abst
                                                | CHead  k0 <λ:K.B> CASE k0 OF Bind b0b0 | Flat Abst
                                            CHead x0 (Bind b) t0
                                  end of H8
                                  (h1
                                     (H9
                                        by (clear_gen_bind . . . . H6)
                                        we proved eq C (CHead d1 (Bind Abst) t) (CHead x0 (Bind b) t0)
                                        by (f_equal . . . . . previous)
                                        we proved 
                                           eq
                                             T
                                             <λ:C.T> CASE CHead d1 (Bind Abst) t OF CSort t | CHead   t1t1
                                             <λ:C.T> CASE CHead x0 (Bind b) t0 OF CSort t | CHead   t1t1

                                           eq
                                             T
                                             λe:C.<λ:C.T> CASE e OF CSort t | CHead   t1t1 (CHead d1 (Bind Abst) t)
                                             λe:C.<λ:C.T> CASE e OF CSort t | CHead   t1t1 (CHead x0 (Bind b) t0)
                                     end of H9
                                      suppose H10eq B Abst b
                                      suppose H11eq C d1 x0
                                      assume c2C
                                      suppose H12csubt g c1 c2
                                        (H13
                                           consider H9
                                           we proved 
                                              eq
                                                T
                                                <λ:C.T> CASE CHead d1 (Bind Abst) t OF CSort t | CHead   t1t1
                                                <λ:C.T> CASE CHead x0 (Bind b) t0 OF CSort t | CHead   t1t1
                                           that is equivalent to eq T t t0
                                           by (eq_ind_r . . . H5 . previous)
drop n O c1 (CHead x0 (Bind b) t)
                                        end of H13
                                        (H14
                                           by (eq_ind_r . . . H13 . H10)
drop n O c1 (CHead x0 (Bind Abst) t)
                                        end of H14
                                        (H15
                                           by (eq_ind_r . . . H14 . H11)
drop n O c1 (CHead d1 (Bind Abst) t)
                                        end of H15
                                        by (csubt_drop_abst . . . . H12 . . H15)
                                        we proved 
                                           or
                                             ex2 C λd2:C.csubt g d1 d2 λd2:C.drop n O c2 (CHead d2 (Bind Abst) t)
                                             ex4_2
                                               C
                                               T
                                               λd2:C.λ:T.csubt g d1 d2
                                               λd2:C.λu:T.drop n O c2 (CHead d2 (Bind Abbr) u)
                                               λ:C.λu:T.ty3 g d1 u t
                                               λd2:C.λu:T.ty3 g d2 u t
                                        we proceed by induction on the previous result to prove 
                                           or
                                             ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                             ex4_2
                                               C
                                               T
                                               λd2:C.λ:T.csubt g d1 d2
                                               λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                               λ:C.λu:T.ty3 g d1 u t
                                               λd2:C.λu:T.ty3 g d2 u t
                                           case or_introl : H16:ex2 C λd2:C.csubt g d1 d2 λd2:C.drop n O c2 (CHead d2 (Bind Abst) t) 
                                              the thesis becomes 
                                              or
                                                ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                ex4_2
                                                  C
                                                  T
                                                  λd2:C.λ:T.csubt g d1 d2
                                                  λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                  λ:C.λu:T.ty3 g d1 u t
                                                  λd2:C.λu:T.ty3 g d2 u t
                                                 we proceed by induction on H16 to prove 
                                                    or
                                                      ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                      ex4_2
                                                        C
                                                        T
                                                        λd2:C.λ:T.csubt g d1 d2
                                                        λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                        λ:C.λu:T.ty3 g d1 u t
                                                        λd2:C.λu:T.ty3 g d2 u t
                                                    case ex_intro2 : x1:C H17:csubt g d1 x1 H18:drop n O c2 (CHead x1 (Bind Abst) t) 
                                                       the thesis becomes 
                                                       or
                                                         ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                         ex4_2
                                                           C
                                                           T
                                                           λd2:C.λ:T.csubt g d1 d2
                                                           λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                           λ:C.λu:T.ty3 g d1 u t
                                                           λd2:C.λu:T.ty3 g d2 u t
                                                          by (clear_bind . . .)
                                                          we proved clear (CHead x1 (Bind Abst) t) (CHead x1 (Bind Abst) t)
                                                          by (getl_intro . . . . H18 previous)
                                                          we proved getl n c2 (CHead x1 (Bind Abst) t)
                                                          by (ex_intro2 . . . . H17 previous)
                                                          we proved ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                          by (or_introl . . previous)

                                                             or
                                                               ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                               ex4_2
                                                                 C
                                                                 T
                                                                 λd2:C.λ:T.csubt g d1 d2
                                                                 λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                                 λ:C.λu:T.ty3 g d1 u t
                                                                 λd2:C.λu:T.ty3 g d2 u t

                                                    or
                                                      ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                      ex4_2
                                                        C
                                                        T
                                                        λd2:C.λ:T.csubt g d1 d2
                                                        λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                        λ:C.λu:T.ty3 g d1 u t
                                                        λd2:C.λu:T.ty3 g d2 u t
                                           case or_intror : H16:ex4_2 C T λd2:C.λ:T.csubt g d1 d2 λd2:C.λu:T.drop n O c2 (CHead d2 (Bind Abbr) u) λ:C.λu:T.ty3 g d1 u t λd2:C.λu:T.ty3 g d2 u t 
                                              the thesis becomes 
                                              or
                                                ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                ex4_2
                                                  C
                                                  T
                                                  λd2:C.λ:T.csubt g d1 d2
                                                  λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                  λ:C.λu:T.ty3 g d1 u t
                                                  λd2:C.λu:T.ty3 g d2 u t
                                                 we proceed by induction on H16 to prove 
                                                    or
                                                      ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                      ex4_2
                                                        C
                                                        T
                                                        λd2:C.λ:T.csubt g d1 d2
                                                        λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                        λ:C.λu:T.ty3 g d1 u t
                                                        λd2:C.λu:T.ty3 g d2 u t
                                                    case ex4_2_intro : x1:C x2:T H17:csubt g d1 x1 H18:drop n O c2 (CHead x1 (Bind Abbr) x2) H19:ty3 g d1 x2 t H20:ty3 g x1 x2 t 
                                                       the thesis becomes 
                                                       or
                                                         ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                         ex4_2
                                                           C
                                                           T
                                                           λd2:C.λ:T.csubt g d1 d2
                                                           λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                           λ:C.λu:T.ty3 g d1 u t
                                                           λd2:C.λu:T.ty3 g d2 u t
                                                          by (clear_bind . . .)
                                                          we proved clear (CHead x1 (Bind Abbr) x2) (CHead x1 (Bind Abbr) x2)
                                                          by (getl_intro . . . . H18 previous)
                                                          we proved getl n c2 (CHead x1 (Bind Abbr) x2)
                                                          by (ex4_2_intro . . . . . . . . H17 previous H19 H20)
                                                          we proved 
                                                             ex4_2
                                                               C
                                                               T
                                                               λd2:C.λ:T.csubt g d1 d2
                                                               λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                               λ:C.λu:T.ty3 g d1 u t
                                                               λd2:C.λu:T.ty3 g d2 u t
                                                          by (or_intror . . previous)

                                                             or
                                                               ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                               ex4_2
                                                                 C
                                                                 T
                                                                 λd2:C.λ:T.csubt g d1 d2
                                                                 λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                                 λ:C.λu:T.ty3 g d1 u t
                                                                 λd2:C.λu:T.ty3 g d2 u t

                                                    or
                                                      ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                      ex4_2
                                                        C
                                                        T
                                                        λd2:C.λ:T.csubt g d1 d2
                                                        λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                        λ:C.λu:T.ty3 g d1 u t
                                                        λd2:C.λu:T.ty3 g d2 u t
                                        we proved 
                                           or
                                             ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                             ex4_2
                                               C
                                               T
                                               λd2:C.λ:T.csubt g d1 d2
                                               λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                               λ:C.λu:T.ty3 g d1 u t
                                               λd2:C.λu:T.ty3 g d2 u t

                                        eq B Abst b
                                          (eq C d1 x0
                                               c2:C
                                                    .csubt g c1 c2
                                                      (or
                                                           ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                           ex4_2
                                                             C
                                                             T
                                                             λd2:C.λ:T.csubt g d1 d2
                                                             λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                             λ:C.λu:T.ty3 g d1 u t
                                                             λd2:C.λu:T.ty3 g d2 u t))
                                  end of h1
                                  (h2
                                     consider H8
                                     we proved 
                                        eq
                                          B
                                          <λ:C.B>
                                            CASE CHead d1 (Bind Abst) t OF
                                              CSort Abst
                                            | CHead  k0 <λ:K.B> CASE k0 OF Bind b0b0 | Flat Abst
                                          <λ:C.B>
                                            CASE CHead x0 (Bind b) t0 OF
                                              CSort Abst
                                            | CHead  k0 <λ:K.B> CASE k0 OF Bind b0b0 | Flat Abst
eq B Abst b
                                  end of h2
                                  by (h1 h2)

                                     eq C d1 x0
                                       c2:C
                                            .csubt g c1 c2
                                              (or
                                                   ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                   ex4_2
                                                     C
                                                     T
                                                     λd2:C.λ:T.csubt g d1 d2
                                                     λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                     λ:C.λu:T.ty3 g d1 u t
                                                     λd2:C.λu:T.ty3 g d2 u t)
                               end of h1
                               (h2
                                  consider H7
                                  we proved 
                                     eq
                                       C
                                       <λ:C.C> CASE CHead d1 (Bind Abst) t OF CSort d1 | CHead c  c
                                       <λ:C.C> CASE CHead x0 (Bind b) t0 OF CSort d1 | CHead c  c
eq C d1 x0
                               end of h2
                               by (h1 h2)
                               we proved 
                                  c2:C
                                    .csubt g c1 c2
                                      (or
                                           ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                           ex4_2
                                             C
                                             T
                                             λd2:C.λ:T.csubt g d1 d2
                                             λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                             λ:C.λu:T.ty3 g d1 u t
                                             λd2:C.λu:T.ty3 g d2 u t)

                               H5:drop n O c1 (CHead x0 (Bind b) t0)
                                 .H6:clear (CHead x0 (Bind b) t0) (CHead d1 (Bind Abst) t)
                                   .c2:C
                                     .csubt g c1 c2
                                       (or
                                            ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                            ex4_2
                                              C
                                              T
                                              λd2:C.λ:T.csubt g d1 d2
                                              λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                              λ:C.λu:T.ty3 g d1 u t
                                              λd2:C.λu:T.ty3 g d2 u t)
                            assume fF
                             suppose H5drop n O c1 (CHead x0 (Flat f) t0)
                             suppose H6clear (CHead x0 (Flat f) t0) (CHead d1 (Bind Abst) t)
                               (H7consider H5
                               we proceed by induction on n to prove 
                                  x1:C
                                    .drop n O x1 (CHead x0 (Flat f) t0)
                                      c2:C
                                           .csubt g x1 c2
                                             (or
                                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                  ex4_2
                                                    C
                                                    T
                                                    λd2:C.λ:T.csubt g d1 d2
                                                    λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                    λ:C.λu:T.ty3 g d1 u t
                                                    λd2:C.λu:T.ty3 g d2 u t)
                                  case O : 
                                     the thesis becomes 
                                     x1:C
                                       .drop O O x1 (CHead x0 (Flat f) t0)
                                         c2:C
                                              .csubt g x1 c2
                                                (or
                                                     ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                     ex4_2
                                                       C
                                                       T
                                                       λd2:C.λ:T.csubt g d1 d2
                                                       λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                       λ:C.λu:T.ty3 g d1 u t
                                                       λd2:C.λu:T.ty3 g d2 u t)
                                         assume x1C
                                         suppose H8drop O O x1 (CHead x0 (Flat f) t0)
                                         assume c2C
                                         suppose H9csubt g x1 c2
                                           (H10
                                              by (drop_gen_refl . . H8)
                                              we proved eq C x1 (CHead x0 (Flat f) t0)
                                              we proceed by induction on the previous result to prove csubt g (CHead x0 (Flat f) t0) c2
                                                 case refl_equal : 
                                                    the thesis becomes the hypothesis H9
csubt g (CHead x0 (Flat f) t0) c2
                                           end of H10
                                           (H_y
                                              by (clear_gen_flat . . . . H6)
                                              we proved clear x0 (CHead d1 (Bind Abst) t)
                                              by (clear_flat . . previous . .)
clear (CHead x0 (Flat f) t0) (CHead d1 (Bind Abst) t)
                                           end of H_y
                                           (H11
                                              by (csubt_clear_conf . . . H10 . H_y)
ex2 C λe2:C.csubt g (CHead d1 (Bind Abst) t) e2 λe2:C.clear c2 e2
                                           end of H11
                                           we proceed by induction on H11 to prove 
                                              or
                                                ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                ex4_2
                                                  C
                                                  T
                                                  λd2:C.λ:T.csubt g d1 d2
                                                  λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                  λ:C.λu:T.ty3 g d1 u t
                                                  λd2:C.λu:T.ty3 g d2 u t
                                              case ex_intro2 : x2:C H12:csubt g (CHead d1 (Bind Abst) t) x2 H13:clear c2 x2 
                                                 the thesis becomes 
                                                 or
                                                   ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                   ex4_2
                                                     C
                                                     T
                                                     λd2:C.λ:T.csubt g d1 d2
                                                     λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                     λ:C.λu:T.ty3 g d1 u t
                                                     λd2:C.λu:T.ty3 g d2 u t
                                                    (H14
                                                       by (csubt_gen_abst . . . . H12)

                                                          or
                                                            ex2 C λe2:C.eq C x2 (CHead e2 (Bind Abst) t) λe2:C.csubt g d1 e2
                                                            ex4_2
                                                              C
                                                              T
                                                              λe2:C.λv2:T.eq C x2 (CHead e2 (Bind Abbr) v2)
                                                              λe2:C.λ:T.csubt g d1 e2
                                                              λ:C.λv2:T.ty3 g d1 v2 t
                                                              λe2:C.λv2:T.ty3 g e2 v2 t
                                                    end of H14
                                                    we proceed by induction on H14 to prove 
                                                       or
                                                         ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                         ex4_2
                                                           C
                                                           T
                                                           λd2:C.λ:T.csubt g d1 d2
                                                           λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                           λ:C.λu:T.ty3 g d1 u t
                                                           λd2:C.λu:T.ty3 g d2 u t
                                                       case or_introl : H15:ex2 C λe2:C.eq C x2 (CHead e2 (Bind Abst) t) λe2:C.csubt g d1 e2 
                                                          the thesis becomes 
                                                          or
                                                            ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                            ex4_2
                                                              C
                                                              T
                                                              λd2:C.λ:T.csubt g d1 d2
                                                              λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                              λ:C.λu:T.ty3 g d1 u t
                                                              λd2:C.λu:T.ty3 g d2 u t
                                                             we proceed by induction on H15 to prove 
                                                                or
                                                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                  ex4_2
                                                                    C
                                                                    T
                                                                    λd2:C.λ:T.csubt g d1 d2
                                                                    λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                    λ:C.λu:T.ty3 g d1 u t
                                                                    λd2:C.λu:T.ty3 g d2 u t
                                                                case ex_intro2 : x3:C H16:eq C x2 (CHead x3 (Bind Abst) t) H17:csubt g d1 x3 
                                                                   the thesis becomes 
                                                                   or
                                                                     ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                     ex4_2
                                                                       C
                                                                       T
                                                                       λd2:C.λ:T.csubt g d1 d2
                                                                       λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                       λ:C.λu:T.ty3 g d1 u t
                                                                       λd2:C.λu:T.ty3 g d2 u t
                                                                      (H18
                                                                         we proceed by induction on H16 to prove clear c2 (CHead x3 (Bind Abst) t)
                                                                            case refl_equal : 
                                                                               the thesis becomes the hypothesis H13
clear c2 (CHead x3 (Bind Abst) t)
                                                                      end of H18
                                                                      by (drop_refl .)
                                                                      we proved drop O O c2 c2
                                                                      by (getl_intro . . . . previous H18)
                                                                      we proved getl O c2 (CHead x3 (Bind Abst) t)
                                                                      by (ex_intro2 . . . . H17 previous)
                                                                      we proved ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                      by (or_introl . . previous)

                                                                         or
                                                                           ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                           ex4_2
                                                                             C
                                                                             T
                                                                             λd2:C.λ:T.csubt g d1 d2
                                                                             λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                             λ:C.λu:T.ty3 g d1 u t
                                                                             λd2:C.λu:T.ty3 g d2 u t

                                                                or
                                                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                  ex4_2
                                                                    C
                                                                    T
                                                                    λd2:C.λ:T.csubt g d1 d2
                                                                    λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                    λ:C.λu:T.ty3 g d1 u t
                                                                    λd2:C.λu:T.ty3 g d2 u t
                                                       case or_intror : H15:ex4_2 C T λe2:C.λv2:T.eq C x2 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g d1 e2 λ:C.λv2:T.ty3 g d1 v2 t λe2:C.λv2:T.ty3 g e2 v2 t 
                                                          the thesis becomes 
                                                          or
                                                            ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                            ex4_2
                                                              C
                                                              T
                                                              λd2:C.λ:T.csubt g d1 d2
                                                              λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                              λ:C.λu:T.ty3 g d1 u t
                                                              λd2:C.λu:T.ty3 g d2 u t
                                                             we proceed by induction on H15 to prove 
                                                                or
                                                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                  ex4_2
                                                                    C
                                                                    T
                                                                    λd2:C.λ:T.csubt g d1 d2
                                                                    λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                    λ:C.λu:T.ty3 g d1 u t
                                                                    λd2:C.λu:T.ty3 g d2 u t
                                                                case ex4_2_intro : x3:C x4:T H16:eq C x2 (CHead x3 (Bind Abbr) x4) H17:csubt g d1 x3 H18:ty3 g d1 x4 t H19:ty3 g x3 x4 t 
                                                                   the thesis becomes 
                                                                   or
                                                                     ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                     ex4_2
                                                                       C
                                                                       T
                                                                       λd2:C.λ:T.csubt g d1 d2
                                                                       λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                       λ:C.λu:T.ty3 g d1 u t
                                                                       λd2:C.λu:T.ty3 g d2 u t
                                                                      (H20
                                                                         we proceed by induction on H16 to prove clear c2 (CHead x3 (Bind Abbr) x4)
                                                                            case refl_equal : 
                                                                               the thesis becomes the hypothesis H13
clear c2 (CHead x3 (Bind Abbr) x4)
                                                                      end of H20
                                                                      by (drop_refl .)
                                                                      we proved drop O O c2 c2
                                                                      by (getl_intro . . . . previous H20)
                                                                      we proved getl O c2 (CHead x3 (Bind Abbr) x4)
                                                                      by (ex4_2_intro . . . . . . . . H17 previous H18 H19)
                                                                      we proved 
                                                                         ex4_2
                                                                           C
                                                                           T
                                                                           λd2:C.λ:T.csubt g d1 d2
                                                                           λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                           λ:C.λu:T.ty3 g d1 u t
                                                                           λd2:C.λu:T.ty3 g d2 u t
                                                                      by (or_intror . . previous)

                                                                         or
                                                                           ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                           ex4_2
                                                                             C
                                                                             T
                                                                             λd2:C.λ:T.csubt g d1 d2
                                                                             λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                             λ:C.λu:T.ty3 g d1 u t
                                                                             λd2:C.λu:T.ty3 g d2 u t

                                                                or
                                                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                                  ex4_2
                                                                    C
                                                                    T
                                                                    λd2:C.λ:T.csubt g d1 d2
                                                                    λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                                    λ:C.λu:T.ty3 g d1 u t
                                                                    λd2:C.λu:T.ty3 g d2 u t

                                                       or
                                                         ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                         ex4_2
                                                           C
                                                           T
                                                           λd2:C.λ:T.csubt g d1 d2
                                                           λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                           λ:C.λu:T.ty3 g d1 u t
                                                           λd2:C.λu:T.ty3 g d2 u t
                                           we proved 
                                              or
                                                ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                ex4_2
                                                  C
                                                  T
                                                  λd2:C.λ:T.csubt g d1 d2
                                                  λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                  λ:C.λu:T.ty3 g d1 u t
                                                  λd2:C.λu:T.ty3 g d2 u t

                                           x1:C
                                             .drop O O x1 (CHead x0 (Flat f) t0)
                                               c2:C
                                                    .csubt g x1 c2
                                                      (or
                                                           ex2 C λd2:C.csubt g d1 d2 λd2:C.getl O c2 (CHead d2 (Bind Abst) t)
                                                           ex4_2
                                                             C
                                                             T
                                                             λd2:C.λ:T.csubt g d1 d2
                                                             λd2:C.λu:T.getl O c2 (CHead d2 (Bind Abbr) u)
                                                             λ:C.λu:T.ty3 g d1 u t
                                                             λd2:C.λu:T.ty3 g d2 u t)
                                  case S : n0:nat 
                                     the thesis becomes 
                                     x1:C
                                       .H9:drop (S n0) O x1 (CHead x0 (Flat f) t0)
                                         .c2:C
                                           .H10:csubt g x1 c2
                                             .or
                                               ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                               ex4_2
                                                 C
                                                 T
                                                 λd2:C.λ:T.csubt g d1 d2
                                                 λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                 λ:C.λu:T.ty3 g d1 u t
                                                 λd2:C.λu:T.ty3 g d2 u t
                                     (H8) by induction hypothesis we know 
                                        x1:C
                                          .drop n0 O x1 (CHead x0 (Flat f) t0)
                                            c2:C
                                                 .csubt g x1 c2
                                                   (or
                                                        ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n0 c2 (CHead d2 (Bind Abst) t)
                                                        ex4_2
                                                          C
                                                          T
                                                          λd2:C.λ:T.csubt g d1 d2
                                                          λd2:C.λu:T.getl n0 c2 (CHead d2 (Bind Abbr) u)
                                                          λ:C.λu:T.ty3 g d1 u t
                                                          λd2:C.λu:T.ty3 g d2 u t)
                                         assume x1C
                                         suppose H9drop (S n0) O x1 (CHead x0 (Flat f) t0)
                                         assume c2C
                                         suppose H10csubt g x1 c2
                                           (H11
                                              by (drop_clear . . . H9)

                                                 ex2_3
                                                   B
                                                   C
                                                   T
                                                   λb:B.λe:C.λv:T.clear x1 (CHead e (Bind b) v)
                                                   λ:B.λe:C.λ:T.drop n0 O e (CHead x0 (Flat f) t0)
                                           end of H11
                                           we proceed by induction on H11 to prove 
                                              or
                                                ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                ex4_2
                                                  C
                                                  T
                                                  λd2:C.λ:T.csubt g d1 d2
                                                  λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                  λ:C.λu:T.ty3 g d1 u t
                                                  λd2:C.λu:T.ty3 g d2 u t
                                              case ex2_3_intro : x2:B x3:C x4:T H12:clear x1 (CHead x3 (Bind x2) x4) H13:drop n0 O x3 (CHead x0 (Flat f) t0) 
                                                 the thesis becomes 
                                                 or
                                                   ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                   ex4_2
                                                     C
                                                     T
                                                     λd2:C.λ:T.csubt g d1 d2
                                                     λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                     λ:C.λu:T.ty3 g d1 u t
                                                     λd2:C.λu:T.ty3 g d2 u t
                                                    (H14
                                                       by (csubt_clear_conf . . . H10 . H12)
ex2 C λe2:C.csubt g (CHead x3 (Bind x2) x4) e2 λe2:C.clear c2 e2
                                                    end of H14
                                                    we proceed by induction on H14 to prove 
                                                       or
                                                         ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                         ex4_2
                                                           C
                                                           T
                                                           λd2:C.λ:T.csubt g d1 d2
                                                           λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                           λ:C.λu:T.ty3 g d1 u t
                                                           λd2:C.λu:T.ty3 g d2 u t
                                                       case ex_intro2 : x5:C H15:csubt g (CHead x3 (Bind x2) x4) x5 H16:clear c2 x5 
                                                          the thesis becomes 
                                                          or
                                                            ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                            ex4_2
                                                              C
                                                              T
                                                              λd2:C.λ:T.csubt g d1 d2
                                                              λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                              λ:C.λu:T.ty3 g d1 u t
                                                              λd2:C.λu:T.ty3 g d2 u t
                                                             (H17
                                                                by (csubt_gen_bind . . . . . H15)
ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C x5 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g x3 e2
                                                             end of H17
                                                             we proceed by induction on H17 to prove 
                                                                or
                                                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                  ex4_2
                                                                    C
                                                                    T
                                                                    λd2:C.λ:T.csubt g d1 d2
                                                                    λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                    λ:C.λu:T.ty3 g d1 u t
                                                                    λd2:C.λu:T.ty3 g d2 u t
                                                                case ex2_3_intro : x6:B x7:C x8:T H18:eq C x5 (CHead x7 (Bind x6) x8) H19:csubt g x3 x7 
                                                                   the thesis becomes 
                                                                   or
                                                                     ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                     ex4_2
                                                                       C
                                                                       T
                                                                       λd2:C.λ:T.csubt g d1 d2
                                                                       λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                       λ:C.λu:T.ty3 g d1 u t
                                                                       λd2:C.λu:T.ty3 g d2 u t
                                                                      (H20
                                                                         we proceed by induction on H18 to prove clear c2 (CHead x7 (Bind x6) x8)
                                                                            case refl_equal : 
                                                                               the thesis becomes the hypothesis H16
clear c2 (CHead x7 (Bind x6) x8)
                                                                      end of H20
                                                                      (H21
                                                                         by (H8 . H13 . H19)

                                                                            or
                                                                              ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n0 x7 (CHead d2 (Bind Abst) t)
                                                                              ex4_2
                                                                                C
                                                                                T
                                                                                λd2:C.λ:T.csubt g d1 d2
                                                                                λd2:C.λu:T.getl n0 x7 (CHead d2 (Bind Abbr) u)
                                                                                λ:C.λu:T.ty3 g d1 u t
                                                                                λd2:C.λu:T.ty3 g d2 u t
                                                                      end of H21
                                                                      we proceed by induction on H21 to prove 
                                                                         or
                                                                           ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                           ex4_2
                                                                             C
                                                                             T
                                                                             λd2:C.λ:T.csubt g d1 d2
                                                                             λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                             λ:C.λu:T.ty3 g d1 u t
                                                                             λd2:C.λu:T.ty3 g d2 u t
                                                                         case or_introl : H22:ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n0 x7 (CHead d2 (Bind Abst) t) 
                                                                            the thesis becomes 
                                                                            or
                                                                              ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                              ex4_2
                                                                                C
                                                                                T
                                                                                λd2:C.λ:T.csubt g d1 d2
                                                                                λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                λ:C.λu:T.ty3 g d1 u t
                                                                                λd2:C.λu:T.ty3 g d2 u t
                                                                               we proceed by induction on H22 to prove 
                                                                                  or
                                                                                    ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                    ex4_2
                                                                                      C
                                                                                      T
                                                                                      λd2:C.λ:T.csubt g d1 d2
                                                                                      λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                      λ:C.λu:T.ty3 g d1 u t
                                                                                      λd2:C.λu:T.ty3 g d2 u t
                                                                                  case ex_intro2 : x9:C H23:csubt g d1 x9 H24:getl n0 x7 (CHead x9 (Bind Abst) t) 
                                                                                     the thesis becomes 
                                                                                     or
                                                                                       ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                       ex4_2
                                                                                         C
                                                                                         T
                                                                                         λd2:C.λ:T.csubt g d1 d2
                                                                                         λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                         λ:C.λu:T.ty3 g d1 u t
                                                                                         λd2:C.λu:T.ty3 g d2 u t
                                                                                        by (getl_clear_bind . . . . H20 . . H24)
                                                                                        we proved getl (S n0) c2 (CHead x9 (Bind Abst) t)
                                                                                        by (ex_intro2 . . . . H23 previous)
                                                                                        we proved ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                        by (or_introl . . previous)

                                                                                           or
                                                                                             ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                             ex4_2
                                                                                               C
                                                                                               T
                                                                                               λd2:C.λ:T.csubt g d1 d2
                                                                                               λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                               λ:C.λu:T.ty3 g d1 u t
                                                                                               λd2:C.λu:T.ty3 g d2 u t

                                                                                  or
                                                                                    ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                    ex4_2
                                                                                      C
                                                                                      T
                                                                                      λd2:C.λ:T.csubt g d1 d2
                                                                                      λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                      λ:C.λu:T.ty3 g d1 u t
                                                                                      λd2:C.λu:T.ty3 g d2 u t
                                                                         case or_intror : H22:ex4_2 C T λd2:C.λ:T.csubt g d1 d2 λd2:C.λu:T.getl n0 x7 (CHead d2 (Bind Abbr) u) λ:C.λu:T.ty3 g d1 u t λd2:C.λu:T.ty3 g d2 u t 
                                                                            the thesis becomes 
                                                                            or
                                                                              ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                              ex4_2
                                                                                C
                                                                                T
                                                                                λd2:C.λ:T.csubt g d1 d2
                                                                                λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                λ:C.λu:T.ty3 g d1 u t
                                                                                λd2:C.λu:T.ty3 g d2 u t
                                                                               we proceed by induction on H22 to prove 
                                                                                  or
                                                                                    ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                    ex4_2
                                                                                      C
                                                                                      T
                                                                                      λd2:C.λ:T.csubt g d1 d2
                                                                                      λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                      λ:C.λu:T.ty3 g d1 u t
                                                                                      λd2:C.λu:T.ty3 g d2 u t
                                                                                  case ex4_2_intro : x9:C x10:T H23:csubt g d1 x9 H24:getl n0 x7 (CHead x9 (Bind Abbr) x10) H25:ty3 g d1 x10 t H26:ty3 g x9 x10 t 
                                                                                     the thesis becomes 
                                                                                     or
                                                                                       ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                       ex4_2
                                                                                         C
                                                                                         T
                                                                                         λd2:C.λ:T.csubt g d1 d2
                                                                                         λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                         λ:C.λu:T.ty3 g d1 u t
                                                                                         λd2:C.λu:T.ty3 g d2 u t
                                                                                        by (getl_clear_bind . . . . H20 . . H24)
                                                                                        we proved getl (S n0) c2 (CHead x9 (Bind Abbr) x10)
                                                                                        by (ex4_2_intro . . . . . . . . H23 previous H25 H26)
                                                                                        we proved 
                                                                                           ex4_2
                                                                                             C
                                                                                             T
                                                                                             λd2:C.λ:T.csubt g d1 d2
                                                                                             λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                             λ:C.λu:T.ty3 g d1 u t
                                                                                             λd2:C.λu:T.ty3 g d2 u t
                                                                                        by (or_intror . . previous)

                                                                                           or
                                                                                             ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                             ex4_2
                                                                                               C
                                                                                               T
                                                                                               λd2:C.λ:T.csubt g d1 d2
                                                                                               λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                               λ:C.λu:T.ty3 g d1 u t
                                                                                               λd2:C.λu:T.ty3 g d2 u t

                                                                                  or
                                                                                    ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                                    ex4_2
                                                                                      C
                                                                                      T
                                                                                      λd2:C.λ:T.csubt g d1 d2
                                                                                      λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                                      λ:C.λu:T.ty3 g d1 u t
                                                                                      λd2:C.λu:T.ty3 g d2 u t

                                                                         or
                                                                           ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                           ex4_2
                                                                             C
                                                                             T
                                                                             λd2:C.λ:T.csubt g d1 d2
                                                                             λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                             λ:C.λu:T.ty3 g d1 u t
                                                                             λd2:C.λu:T.ty3 g d2 u t

                                                                or
                                                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                                  ex4_2
                                                                    C
                                                                    T
                                                                    λd2:C.λ:T.csubt g d1 d2
                                                                    λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                                    λ:C.λu:T.ty3 g d1 u t
                                                                    λd2:C.λu:T.ty3 g d2 u t

                                                       or
                                                         ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                         ex4_2
                                                           C
                                                           T
                                                           λd2:C.λ:T.csubt g d1 d2
                                                           λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                           λ:C.λu:T.ty3 g d1 u t
                                                           λd2:C.λu:T.ty3 g d2 u t
                                           we proved 
                                              or
                                                ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                ex4_2
                                                  C
                                                  T
                                                  λd2:C.λ:T.csubt g d1 d2
                                                  λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                  λ:C.λu:T.ty3 g d1 u t
                                                  λd2:C.λu:T.ty3 g d2 u t

                                           x1:C
                                             .H9:drop (S n0) O x1 (CHead x0 (Flat f) t0)
                                               .c2:C
                                                 .H10:csubt g x1 c2
                                                   .or
                                                     ex2 C λd2:C.csubt g d1 d2 λd2:C.getl (S n0) c2 (CHead d2 (Bind Abst) t)
                                                     ex4_2
                                                       C
                                                       T
                                                       λd2:C.λ:T.csubt g d1 d2
                                                       λd2:C.λu:T.getl (S n0) c2 (CHead d2 (Bind Abbr) u)
                                                       λ:C.λu:T.ty3 g d1 u t
                                                       λd2:C.λu:T.ty3 g d2 u t
                               we proved 
                                  x1:C
                                    .drop n O x1 (CHead x0 (Flat f) t0)
                                      c2:C
                                           .csubt g x1 c2
                                             (or
                                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                                  ex4_2
                                                    C
                                                    T
                                                    λd2:C.λ:T.csubt g d1 d2
                                                    λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                                    λ:C.λu:T.ty3 g d1 u t
                                                    λd2:C.λu:T.ty3 g d2 u t)
                               by (unintro . . . previous H7)
                               we proved 
                                  c2:C
                                    .csubt g c1 c2
                                      (or
                                           ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                           ex4_2
                                             C
                                             T
                                             λd2:C.λ:T.csubt g d1 d2
                                             λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                             λ:C.λu:T.ty3 g d1 u t
                                             λd2:C.λu:T.ty3 g d2 u t)

                               H5:drop n O c1 (CHead x0 (Flat f) t0)
                                 .H6:clear (CHead x0 (Flat f) t0) (CHead d1 (Bind Abst) t)
                                   .c2:C
                                     .csubt g c1 c2
                                       (or
                                            ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                            ex4_2
                                              C
                                              T
                                              λd2:C.λ:T.csubt g d1 d2
                                              λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                              λ:C.λu:T.ty3 g d1 u t
                                              λd2:C.λu:T.ty3 g d2 u t)
                         by (previous . H3 H4)
                         we proved 
                            c2:C
                              .csubt g c1 c2
                                (or
                                     ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                     ex4_2
                                       C
                                       T
                                       λd2:C.λ:T.csubt g d1 d2
                                       λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                       λ:C.λu:T.ty3 g d1 u t
                                       λd2:C.λu:T.ty3 g d2 u t)

                         H3:drop n O c1 (CHead x0 k t0)
                           .H4:clear (CHead x0 k t0) (CHead d1 (Bind Abst) t)
                             .c2:C
                               .csubt g c1 c2
                                 (or
                                      ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                      ex4_2
                                        C
                                        T
                                        λd2:C.λ:T.csubt g d1 d2
                                        λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                        λ:C.λu:T.ty3 g d1 u t
                                        λd2:C.λu:T.ty3 g d2 u t)
                   by (previous . H1 H2)

                      c2:C
                        .csubt g c1 c2
                          (or
                               ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                               ex4_2
                                 C
                                 T
                                 λd2:C.λ:T.csubt g d1 d2
                                 λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                 λ:C.λu:T.ty3 g d1 u t
                                 λd2:C.λu:T.ty3 g d2 u t)
          we proved 
             c2:C
               .csubt g c1 c2
                 (or
                      ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                      ex4_2
                        C
                        T
                        λd2:C.λ:T.csubt g d1 d2
                        λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                        λ:C.λu:T.ty3 g d1 u t
                        λd2:C.λu:T.ty3 g d2 u t)
       we proved 
          g:G
            .c1:C
              .d1:C
                .t:T
                  .n:nat
                    .getl n c1 (CHead d1 (Bind Abst) t)
                      c2:C
                           .csubt g c1 c2
                             (or
                                  ex2 C λd2:C.csubt g d1 d2 λd2:C.getl n c2 (CHead d2 (Bind Abst) t)
                                  ex4_2
                                    C
                                    T
                                    λd2:C.λ:T.csubt g d1 d2
                                    λd2:C.λu:T.getl n c2 (CHead d2 (Bind Abbr) u)
                                    λ:C.λu:T.ty3 g d1 u t
                                    λd2:C.λu:T.ty3 g d2 u t)