DEFINITION csubt_gen_bind()
TYPE =
       g:G
         .b1:B
           .e1:C
             .c2:C
               .v1:T
                 .csubt g (CHead e1 (Bind b1) v1) c2
                   ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c2 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
BODY =
        assume gG
        assume b1B
        assume e1C
        assume c2C
        assume v1T
        suppose Hcsubt g (CHead e1 (Bind b1) v1) c2
           assume yC
           suppose H0csubt g y c2
             we proceed by induction on H0 to prove 
                eq C y (CHead e1 (Bind b1) v1)
                  ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c2 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                case csubt_sort : n:nat 
                   the thesis becomes 
                   H1:eq C (CSort n) (CHead e1 (Bind b1) v1)
                     .ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CSort n) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                      suppose H1eq C (CSort n) (CHead e1 (Bind b1) v1)
                         (H2
                            we proceed by induction on H1 to prove <λ:C.Prop> CASE CHead e1 (Bind b1) v1 OF CSort True | CHead   False
                               case refl_equal : 
                                  the thesis becomes <λ:C.Prop> CASE CSort n OF CSort True | CHead   False
                                     consider I
                                     we proved True
<λ:C.Prop> CASE CSort n OF CSort True | CHead   False
<λ:C.Prop> CASE CHead e1 (Bind b1) v1 OF CSort True | CHead   False
                         end of H2
                         consider H2
                         we proved <λ:C.Prop> CASE CHead e1 (Bind b1) v1 OF CSort True | CHead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CSort n) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                         we proved ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CSort n) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2

                         H1:eq C (CSort n) (CHead e1 (Bind b1) v1)
                           .ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CSort n) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                case csubt_head : c1:C c3:C H1:csubt g c1 c3 k:K u:T 
                   the thesis becomes 
                   H3:eq C (CHead c1 k u) (CHead e1 (Bind b1) v1)
                     .ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                   (H2) by induction hypothesis we know 
                      eq C c1 (CHead e1 (Bind b1) v1)
                        ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c3 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                      suppose H3eq C (CHead c1 k u) (CHead e1 (Bind b1) v1)
                         (H4
                            by (f_equal . . . . . H3)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 k u OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind b1) v1 OF CSort c1 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead c1 k u)
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead e1 (Bind b1) v1)
                         end of H4
                         (h1
                            (H5
                               by (f_equal . . . . . H3)
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c1 k u OF CSort k | CHead  k0 k0
                                    <λ:C.K> CASE CHead e1 (Bind b1) v1 OF CSort k | CHead  k0 k0

                                  eq
                                    K
                                    λe:C.<λ:C.K> CASE e OF CSort k | CHead  k0 k0 (CHead c1 k u)
                                    λe:C.<λ:C.K> CASE e OF CSort k | CHead  k0 k0 (CHead e1 (Bind b1) v1)
                            end of H5
                            (h1
                               (H6
                                  by (f_equal . . . . . H3)
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c1 k u OF CSort u | CHead   tt
                                       <λ:C.T> CASE CHead e1 (Bind b1) v1 OF CSort u | CHead   tt

                                     eq
                                       T
                                       λe:C.<λ:C.T> CASE e OF CSort u | CHead   tt (CHead c1 k u)
                                       λe:C.<λ:C.T> CASE e OF CSort u | CHead   tt (CHead e1 (Bind b1) v1)
                               end of H6
                                suppose H7eq K k (Bind b1)
                                suppose H8eq C c1 e1
                                  (h1
                                     (H10
                                        we proceed by induction on H8 to prove csubt g e1 c3
                                           case refl_equal : 
                                              the thesis becomes the hypothesis H1
csubt g e1 c3
                                     end of H10
                                     by (refl_equal . .)
                                     we proved eq C (CHead c3 (Bind b1) v1) (CHead c3 (Bind b1) v1)
                                     by (ex2_3_intro . . . . . . . . previous H10)
                                     we proved 
                                        ex2_3
                                          B
                                          C
                                          T
                                          λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind b1) v1) (CHead e2 (Bind b2) v2)
                                          λ:B.λe2:C.λ:T.csubt g e1 e2
                                     by (eq_ind_r . . . previous . H7)
ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CHead c3 k v1) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                                  end of h1
                                  (h2
                                     consider H6
                                     we proved 
                                        eq
                                          T
                                          <λ:C.T> CASE CHead c1 k u OF CSort u | CHead   tt
                                          <λ:C.T> CASE CHead e1 (Bind b1) v1 OF CSort u | CHead   tt
eq T u v1
                                  end of h2
                                  by (eq_ind_r . . . h1 . h2)
                                  we proved ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2

                                  eq K k (Bind b1)
                                    (eq C c1 e1
                                         ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2)
                            end of h1
                            (h2
                               consider H5
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c1 k u OF CSort k | CHead  k0 k0
                                    <λ:C.K> CASE CHead e1 (Bind b1) v1 OF CSort k | CHead  k0 k0
eq K k (Bind b1)
                            end of h2
                            by (h1 h2)

                               eq C c1 e1
                                 ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                         end of h1
                         (h2
                            consider H4
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 k u OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind b1) v1 OF CSort c1 | CHead c  c
eq C c1 e1
                         end of h2
                         by (h1 h2)
                         we proved ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2

                         H3:eq C (CHead c1 k u) (CHead e1 (Bind b1) v1)
                           .ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                case csubt_void : c1:C c3:C H1:csubt g c1 c3 b:B :not (eq B b Void) u1:T u2:T 
                   the thesis becomes 
                   H4:eq C (CHead c1 (Bind Void) u1) (CHead e1 (Bind b1) v1)
                     .ex2_3
                       B
                       C
                       T
                       λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind b2) v2)
                       λ:B.λe2:C.λ:T.csubt g e1 e2
                   (H2) by induction hypothesis we know 
                      eq C c1 (CHead e1 (Bind b1) v1)
                        ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c3 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                      suppose H4eq C (CHead c1 (Bind Void) u1) (CHead e1 (Bind b1) v1)
                         (H5
                            by (f_equal . . . . . H4)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 (Bind Void) u1 OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind b1) v1 OF CSort c1 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead c1 (Bind Void) u1)
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead e1 (Bind b1) v1)
                         end of H5
                         (h1
                            (H6
                               by (f_equal . . . . . H4)
                               we proved 
                                  eq
                                    B
                                    <λ:C.B>
                                      CASE CHead c1 (Bind Void) u1 OF
                                        CSort Void
                                      | CHead  k <λ:K.B> CASE k OF Bind b0b0 | Flat Void
                                    <λ:C.B>
                                      CASE CHead e1 (Bind b1) v1 OF
                                        CSort Void
                                      | CHead  k <λ:K.B> CASE k OF Bind b0b0 | Flat Void

                                  eq
                                    B
                                    λe:C
                                        .<λ:C.B>
                                          CASE e OF
                                            CSort Void
                                          | CHead  k <λ:K.B> CASE k OF Bind b0b0 | Flat Void
                                      CHead c1 (Bind Void) u1
                                    λe:C
                                        .<λ:C.B>
                                          CASE e OF
                                            CSort Void
                                          | CHead  k <λ:K.B> CASE k OF Bind b0b0 | Flat Void
                                      CHead e1 (Bind b1) v1
                            end of H6
                            (H8
                               consider H6
                               we proved 
                                  eq
                                    B
                                    <λ:C.B>
                                      CASE CHead c1 (Bind Void) u1 OF
                                        CSort Void
                                      | CHead  k <λ:K.B> CASE k OF Bind b0b0 | Flat Void
                                    <λ:C.B>
                                      CASE CHead e1 (Bind b1) v1 OF
                                        CSort Void
                                      | CHead  k <λ:K.B> CASE k OF Bind b0b0 | Flat Void
eq B Void b1
                            end of H8
                            suppose H9eq C c1 e1
                               (H10
                                  we proceed by induction on H9 to prove 
                                     eq C e1 (CHead e1 (Bind b1) v1)
                                       ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c3 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H2

                                     eq C e1 (CHead e1 (Bind b1) v1)
                                       ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c3 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                               end of H10
                               (H11
                                  we proceed by induction on H9 to prove csubt g e1 c3
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H1
csubt g e1 c3
                               end of H11
                               by (refl_equal . .)
                               we proved eq C (CHead c3 (Bind b) u2) (CHead c3 (Bind b) u2)
                               by (ex2_3_intro . . . . . . . . previous H11)
                               we proved 
                                  ex2_3
                                    B
                                    C
                                    T
                                    λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind b2) v2)
                                    λ:B.λe2:C.λ:T.csubt g e1 e2

                               eq C c1 e1
                                 (ex2_3
                                      B
                                      C
                                      T
                                      λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind b2) v2)
                                      λ:B.λe2:C.λ:T.csubt g e1 e2)
                         end of h1
                         (h2
                            consider H5
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 (Bind Void) u1 OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind b1) v1 OF CSort c1 | CHead c  c
eq C c1 e1
                         end of h2
                         by (h1 h2)
                         we proved 
                            ex2_3
                              B
                              C
                              T
                              λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind b2) v2)
                              λ:B.λe2:C.λ:T.csubt g e1 e2

                         H4:eq C (CHead c1 (Bind Void) u1) (CHead e1 (Bind b1) v1)
                           .ex2_3
                             B
                             C
                             T
                             λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind b2) v2)
                             λ:B.λe2:C.λ:T.csubt g e1 e2
                case csubt_abst : c1:C c3:C H1:csubt g c1 c3 u:T t:T H3:ty3 g c1 u t H4:ty3 g c3 u t 
                   the thesis becomes 
                   H5:eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1)
                     .ex2_3
                       B
                       C
                       T
                       λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind b2) v2)
                       λ:B.λe2:C.λ:T.csubt g e1 e2
                   (H2) by induction hypothesis we know 
                      eq C c1 (CHead e1 (Bind b1) v1)
                        ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c3 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                      suppose H5eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1)
                         (H6
                            by (f_equal . . . . . H5)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 (Bind Abst) t OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind b1) v1 OF CSort c1 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead c1 (Bind Abst) t)
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead e1 (Bind b1) v1)
                         end of H6
                         (h1
                            (H7
                               by (f_equal . . . . . H5)
                               we proved 
                                  eq
                                    B
                                    <λ:C.B>
                                      CASE CHead c1 (Bind Abst) t OF
                                        CSort Abst
                                      | CHead  k <λ:K.B> CASE k OF Bind bb | Flat Abst
                                    <λ:C.B>
                                      CASE CHead e1 (Bind b1) v1 OF
                                        CSort Abst
                                      | CHead  k <λ:K.B> CASE k OF Bind bb | Flat Abst

                                  eq
                                    B
                                    λe:C
                                        .<λ:C.B>
                                          CASE e OF
                                            CSort Abst
                                          | CHead  k <λ:K.B> CASE k OF Bind bb | Flat Abst
                                      CHead c1 (Bind Abst) t
                                    λe:C
                                        .<λ:C.B>
                                          CASE e OF
                                            CSort Abst
                                          | CHead  k <λ:K.B> CASE k OF Bind bb | Flat Abst
                                      CHead e1 (Bind b1) v1
                            end of H7
                            (h1
                               (H8
                                  by (f_equal . . . . . H5)
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c1 (Bind Abst) t OF CSort t | CHead   t0t0
                                       <λ:C.T> CASE CHead e1 (Bind b1) v1 OF CSort t | CHead   t0t0

                                     eq
                                       T
                                       λe:C.<λ:C.T> CASE e OF CSort t | CHead   t0t0 (CHead c1 (Bind Abst) t)
                                       λe:C.<λ:C.T> CASE e OF CSort t | CHead   t0t0 (CHead e1 (Bind b1) v1)
                               end of H8
                                suppose H9eq B Abst b1
                                suppose H10eq C c1 e1
                                  (H12
                                     consider H8
                                     we proved 
                                        eq
                                          T
                                          <λ:C.T> CASE CHead c1 (Bind Abst) t OF CSort t | CHead   t0t0
                                          <λ:C.T> CASE CHead e1 (Bind b1) v1 OF CSort t | CHead   t0t0
                                     that is equivalent to eq T t v1
                                     we proceed by induction on the previous result to prove ty3 g c1 u v1
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H3
ty3 g c1 u v1
                                  end of H12
                                  (H14
                                     we proceed by induction on H10 to prove 
                                        eq C e1 (CHead e1 (Bind b1) v1)
                                          ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c3 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H2

                                        eq C e1 (CHead e1 (Bind b1) v1)
                                          ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c3 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
                                  end of H14
                                  (H15
                                     we proceed by induction on H10 to prove csubt g e1 c3
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H1
csubt g e1 c3
                                  end of H15
                                  by (refl_equal . .)
                                  we proved eq C (CHead c3 (Bind Abbr) u) (CHead c3 (Bind Abbr) u)
                                  by (ex2_3_intro . . . . . . . . previous H15)
                                  we proved 
                                     ex2_3
                                       B
                                       C
                                       T
                                       λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind b2) v2)
                                       λ:B.λe2:C.λ:T.csubt g e1 e2

                                  eq B Abst b1
                                    (eq C c1 e1
                                         (ex2_3
                                              B
                                              C
                                              T
                                              λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind b2) v2)
                                              λ:B.λe2:C.λ:T.csubt g e1 e2))
                            end of h1
                            (h2
                               consider H7
                               we proved 
                                  eq
                                    B
                                    <λ:C.B>
                                      CASE CHead c1 (Bind Abst) t OF
                                        CSort Abst
                                      | CHead  k <λ:K.B> CASE k OF Bind bb | Flat Abst
                                    <λ:C.B>
                                      CASE CHead e1 (Bind b1) v1 OF
                                        CSort Abst
                                      | CHead  k <λ:K.B> CASE k OF Bind bb | Flat Abst
eq B Abst b1
                            end of h2
                            by (h1 h2)

                               eq C c1 e1
                                 (ex2_3
                                      B
                                      C
                                      T
                                      λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind b2) v2)
                                      λ:B.λe2:C.λ:T.csubt g e1 e2)
                         end of h1
                         (h2
                            consider H6
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 (Bind Abst) t OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind b1) v1 OF CSort c1 | CHead c  c
eq C c1 e1
                         end of h2
                         by (h1 h2)
                         we proved 
                            ex2_3
                              B
                              C
                              T
                              λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind b2) v2)
                              λ:B.λe2:C.λ:T.csubt g e1 e2

                         H5:eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1)
                           .ex2_3
                             B
                             C
                             T
                             λb2:B.λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind b2) v2)
                             λ:B.λe2:C.λ:T.csubt g e1 e2
             we proved 
                eq C y (CHead e1 (Bind b1) v1)
                  ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c2 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
          we proved 
             y:C
               .csubt g y c2
                 (eq C y (CHead e1 (Bind b1) v1)
                      ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c2 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2)
          by (insert_eq . . . . previous H)
          we proved ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c2 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2
       we proved 
          g:G
            .b1:B
              .e1:C
                .c2:C
                  .v1:T
                    .csubt g (CHead e1 (Bind b1) v1) c2
                      ex2_3 B C T λb2:B.λe2:C.λv2:T.eq C c2 (CHead e2 (Bind b2) v2) λ:B.λe2:C.λ:T.csubt g e1 e2