DEFINITION csubt_ind()
TYPE =
∀g:G
.∀P:C→C→Prop
.∀n:nat.(P (CSort n) (CSort n))
→(∀c:C
.∀c1:C.(csubt g c c1)→(P c c1)→∀k:K.∀t:T.(P (CHead c k t) (CHead c1 k t))
→(∀c:C
.∀c1:C
.csubt g c c1
→(P c c1
→∀b:B
.not (eq B b Void)
→∀t:T.∀t1:T.(P (CHead c (Bind Void) t) (CHead c1 (Bind b) t1)))
→(∀c:C
.∀c1:C
.csubt g c c1
→(P c c1
→∀t:T
.∀t1:T
.ty3 g c t t1
→(ty3 g c1 t t1)→(P (CHead c (Bind Abst) t1) (CHead c1 (Bind Abbr) t)))
→∀c:C.∀c1:C.(csubt g c c1)→(P c c1))))
BODY =
Show proof