DEFINITION csubst1_ind()
TYPE =
∀i:nat
.∀v:T
.∀c1:C
.∀P:C→Prop
.(P c1)→(∀c:C.(csubst0 i v c1 c)→(P c))→∀c:C.(csubst1 i v c1 c)→(P c)
BODY =
assume i: nat
assume v: T
assume c1: C
assume P: C→Prop
suppose H: P c1
suppose H1: ∀c:C.(csubst0 i v c1 c)→(P c)
assume c: C
suppose H2: csubst1 i v c1 c
by cases on H2 we prove P c
case csubst1_refl ⇒
the thesis becomes the hypothesis H
case csubst1_sing c2:C H3:csubst0 i v c1 c2 ⇒
the thesis becomes P c2
by (H1 . H3)
P c2
we proved P c
we proved
∀i:nat
.∀v:T
.∀c1:C
.∀P:C→Prop
.(P c1)→(∀c:C.(csubst0 i v c1 c)→(P c))→∀c:C.(csubst1 i v c1 c)→(P c)