DEFINITION csubst1_ind()
TYPE =
       i:nat
         .v:T
           .c1:C
             .P:CProp
               .(P c1)(c:C.(csubst0 i v c1 c)(P c))c:C.(csubst1 i v c1 c)(P c)
BODY =
        assume inat
        assume vT
        assume c1C
        assume PCProp
        suppose HP c1
        suppose H1c:C.(csubst0 i v c1 c)(P c)
        assume cC
        suppose H2csubst1 i v c1 c
          by cases on H2 we prove P c
             case csubst1_refl 
                the thesis becomes the hypothesis H
             case csubst1_sing c2:C H3:csubst0 i v c1 c2 
                the thesis becomes P c2
                by (H1 . H3)
P c2
          we proved P c
       we proved 
          i:nat
            .v:T
              .c1:C
                .P:CProp
                  .(P c1)(c:C.(csubst0 i v c1 c)(P c))c:C.(csubst1 i v c1 c)(P c)