DEFINITION csubst0_getl_lt()
TYPE =
∀i:nat
.∀n:nat
.lt n i
→∀c1:C
.∀c2:C
.∀v:T
.csubst0 i v c1 c2
→∀e:C
.getl n c1 e
→(or4
getl n c2 e
ex3_4
B
C
T
T
λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
ex3_4
B
C
C
T
λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
ex4_5
B
C
C
T
T
λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2)
BODY =
Show proof