DEFINITION csubst0_getl_lt()
TYPE =
       i:nat
         .n:nat
           .lt n i
             c1:C
                  .c2:C
                    .v:T
                      .csubst0 i v c1 c2
                        e:C
                             .getl n c1 e
                               (or4
                                    getl n c2 e
                                    ex3_4
                                      B
                                      C
                                      T
                                      T
                                      λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                      λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                      λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                    ex3_4
                                      B
                                      C
                                      C
                                      T
                                      λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                      λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                      λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                    ex4_5
                                      B
                                      C
                                      C
                                      T
                                      T
                                      λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                      λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                      λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                      λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2)
BODY =
        assume inat
        assume nnat
        suppose Hlt n i
        assume c1C
        assume c2C
        assume vT
        suppose H0csubst0 i v c1 c2
        assume eC
        suppose H1getl n c1 e
          (H2
             by (getl_gen_all . . . H1)
ex2 C λe:C.drop n O c1 e λe:C.clear e e
          end of H2
          we proceed by induction on H2 to prove 
             or4
               getl n c2 e
               ex3_4
                 B
                 C
                 T
                 T
                 λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                 λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                 λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
               ex3_4
                 B
                 C
                 C
                 T
                 λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                 λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                 λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
               ex4_5
                 B
                 C
                 C
                 T
                 T
                 λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                 λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                 λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                 λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
             case ex_intro2 : x:C H3:drop n O c1 x H4:clear x e 
                the thesis becomes 
                or4
                  getl n c2 e
                  ex3_4
                    B
                    C
                    T
                    T
                    λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                  ex3_4
                    B
                    C
                    C
                    T
                    λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                  ex4_5
                    B
                    C
                    C
                    T
                    T
                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                   (H5
                      by (csubst0_drop_lt . . H . . . H0 . H3)

                         or4
                           drop n O c2 x
                           ex3_4
                             K
                             C
                             T
                             T
                             λk:K.λe0:C.λu:T.λ:T.eq C x (CHead e0 k u)
                             λk:K.λe0:C.λ:T.λw:T.drop n O c2 (CHead e0 k w)
                             λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                           ex3_4
                             K
                             C
                             C
                             T
                             λk:K.λe1:C.λ:C.λu:T.eq C x (CHead e1 k u)
                             λk:K.λ:C.λe2:C.λu:T.drop n O c2 (CHead e2 k u)
                             λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k n)) v e1 e2
                           ex4_5
                             K
                             C
                             C
                             T
                             T
                             λk:K.λe1:C.λ:C.λu:T.λ:T.eq C x (CHead e1 k u)
                             λk:K.λ:C.λe2:C.λ:T.λw:T.drop n O c2 (CHead e2 k w)
                             λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                             λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k n)) v e1 e2
                   end of H5
                   we proceed by induction on H5 to prove 
                      or4
                        getl n c2 e
                        ex3_4
                          B
                          C
                          T
                          T
                          λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                          λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                          λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                        ex3_4
                          B
                          C
                          C
                          T
                          λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                          λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                          λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                        ex4_5
                          B
                          C
                          C
                          T
                          T
                          λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                          λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                          λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                          λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                      case or4_intro0 : H6:drop n O c2 x 
                         the thesis becomes 
                         or4
                           getl n c2 e
                           ex3_4
                             B
                             C
                             T
                             T
                             λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                             λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                             λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                           ex3_4
                             B
                             C
                             C
                             T
                             λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                             λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                             λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                           ex4_5
                             B
                             C
                             C
                             T
                             T
                             λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                             λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                             λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                             λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                            by (getl_intro . . . . H6 H4)
                            we proved getl n c2 e
                            by (or4_intro0 . . . . previous)

                               or4
                                 getl n c2 e
                                 ex3_4
                                   B
                                   C
                                   T
                                   T
                                   λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                   λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                   λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                 ex3_4
                                   B
                                   C
                                   C
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                   λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                 ex4_5
                                   B
                                   C
                                   C
                                   T
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                   λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                   λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                      case or4_intro1 : H6:ex3_4 K C T T λk:K.λe0:C.λu:T.λ:T.eq C x (CHead e0 k u) λk:K.λe0:C.λ:T.λw:T.drop n O c2 (CHead e0 k w) λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w 
                         the thesis becomes 
                         or4
                           getl n c2 e
                           ex3_4
                             B
                             C
                             T
                             T
                             λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                             λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                             λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                           ex3_4
                             B
                             C
                             C
                             T
                             λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                             λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                             λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                           ex4_5
                             B
                             C
                             C
                             T
                             T
                             λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                             λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                             λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                             λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                            we proceed by induction on H6 to prove 
                               or4
                                 getl n c2 e
                                 ex3_4
                                   B
                                   C
                                   T
                                   T
                                   λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                   λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                   λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                 ex3_4
                                   B
                                   C
                                   C
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                   λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                 ex4_5
                                   B
                                   C
                                   C
                                   T
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                   λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                   λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                               case ex3_4_intro : x0:K x1:C x2:T x3:T H7:eq C x (CHead x1 x0 x2) H8:drop n O c2 (CHead x1 x0 x3) H9:subst0 (minus i (s x0 n)) v x2 x3 
                                  the thesis becomes 
                                  or4
                                    getl n c2 e
                                    ex3_4
                                      B
                                      C
                                      T
                                      T
                                      λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                      λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                      λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                    ex3_4
                                      B
                                      C
                                      C
                                      T
                                      λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                      λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                      λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                    ex4_5
                                      B
                                      C
                                      C
                                      T
                                      T
                                      λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                      λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                      λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                      λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                     (H10
                                        we proceed by induction on H7 to prove clear (CHead x1 x0 x2) e
                                           case refl_equal : 
                                              the thesis becomes the hypothesis H4
clear (CHead x1 x0 x2) e
                                     end of H10
                                        assume bB
                                         suppose H11drop n O c2 (CHead x1 (Bind b) x3)
                                         suppose H12subst0 (minus i (s (Bind b) n)) v x2 x3
                                         suppose H13clear (CHead x1 (Bind b) x2) e
                                           (h1
                                              (h1
                                                 by (refl_equal . .)
eq C (CHead x1 (Bind b) x2) (CHead x1 (Bind b) x2)
                                              end of h1
                                              (h2
                                                 by (clear_bind . . .)
                                                 we proved clear (CHead x1 (Bind b) x3) (CHead x1 (Bind b) x3)
                                                 by (getl_intro . . . . H11 previous)
getl n c2 (CHead x1 (Bind b) x3)
                                              end of h2
                                              (h3
                                                 consider H12
                                                 we proved subst0 (minus i (s (Bind b) n)) v x2 x3
subst0 (minus i (S n)) v x2 x3
                                              end of h3
                                              by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                              we proved 
                                                 ex3_4
                                                   B
                                                   C
                                                   T
                                                   T
                                                   λb0:B.λe0:C.λu:T.λ:T.eq C (CHead x1 (Bind b) x2) (CHead e0 (Bind b0) u)
                                                   λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                   λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                              by (or4_intro1 . . . . previous)

                                                 or4
                                                   getl n c2 (CHead x1 (Bind b) x2)
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe0:C.λu:T.λ:T.eq C (CHead x1 (Bind b) x2) (CHead e0 (Bind b0) u)
                                                     λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.eq C (CHead x1 (Bind b) x2) (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x1 (Bind b) x2) (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                           end of h1
                                           (h2
                                              by (clear_gen_bind . . . . H13)
eq C e (CHead x1 (Bind b) x2)
                                           end of h2
                                           by (eq_ind_r . . . h1 . h2)
                                           we proved 
                                              or4
                                                getl n c2 e
                                                ex3_4
                                                  B
                                                  C
                                                  T
                                                  T
                                                  λb0:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b0) u)
                                                  λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                ex3_4
                                                  B
                                                  C
                                                  C
                                                  T
                                                  λb0:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b0) u)
                                                  λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                ex4_5
                                                  B
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b0) u)
                                                  λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                           H11:drop n O c2 (CHead x1 (Bind b) x3)
                                             .H12:subst0 (minus i (s (Bind b) n)) v x2 x3
                                               .H13:clear (CHead x1 (Bind b) x2) e
                                                 .or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b0) u)
                                                     λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                        assume fF
                                         suppose H11drop n O c2 (CHead x1 (Flat f) x3)
                                         suppose subst0 (minus i (s (Flat f) n)) v x2 x3
                                         suppose H13clear (CHead x1 (Flat f) x2) e
                                           by (clear_gen_flat . . . . H13)
                                           we proved clear x1 e
                                           by (clear_flat . . previous . .)
                                           we proved clear (CHead x1 (Flat f) x3) e
                                           by (getl_intro . . . . H11 previous)
                                           we proved getl n c2 e
                                           by (or4_intro0 . . . . previous)
                                           we proved 
                                              or4
                                                getl n c2 e
                                                ex3_4
                                                  B
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                  λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                ex3_4
                                                  B
                                                  C
                                                  C
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                ex4_5
                                                  B
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                           H11:drop n O c2 (CHead x1 (Flat f) x3)
                                             .subst0 (minus i (s (Flat f) n)) v x2 x3
                                               H13:clear (CHead x1 (Flat f) x2) e
                                                    .or4
                                                      getl n c2 e
                                                      ex3_4
                                                        B
                                                        C
                                                        T
                                                        T
                                                        λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                        λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                        λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                      ex3_4
                                                        B
                                                        C
                                                        C
                                                        T
                                                        λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                        λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                        λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                      ex4_5
                                                        B
                                                        C
                                                        C
                                                        T
                                                        T
                                                        λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                        λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                        λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                        λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                     by (previous . H8 H9 H10)

                                        or4
                                          getl n c2 e
                                          ex3_4
                                            B
                                            C
                                            T
                                            T
                                            λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                            λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                            λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                          ex3_4
                                            B
                                            C
                                            C
                                            T
                                            λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                            λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                            λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                          ex4_5
                                            B
                                            C
                                            C
                                            T
                                            T
                                            λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                            λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                            λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                            λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                               or4
                                 getl n c2 e
                                 ex3_4
                                   B
                                   C
                                   T
                                   T
                                   λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                   λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                   λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                 ex3_4
                                   B
                                   C
                                   C
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                   λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                 ex4_5
                                   B
                                   C
                                   C
                                   T
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                   λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                   λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                      case or4_intro2 : H6:ex3_4 K C C T λk:K.λe1:C.λ:C.λu:T.eq C x (CHead e1 k u) λk:K.λ:C.λe2:C.λu:T.drop n O c2 (CHead e2 k u) λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k n)) v e1 e2 
                         the thesis becomes 
                         or4
                           getl n c2 e
                           ex3_4
                             B
                             C
                             T
                             T
                             λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                             λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                             λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                           ex3_4
                             B
                             C
                             C
                             T
                             λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                             λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                             λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                           ex4_5
                             B
                             C
                             C
                             T
                             T
                             λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                             λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                             λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                             λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                            we proceed by induction on H6 to prove 
                               or4
                                 getl n c2 e
                                 ex3_4
                                   B
                                   C
                                   T
                                   T
                                   λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                   λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                   λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                 ex3_4
                                   B
                                   C
                                   C
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                   λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                 ex4_5
                                   B
                                   C
                                   C
                                   T
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                   λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                   λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                               case ex3_4_intro : x0:K x1:C x2:C x3:T H7:eq C x (CHead x1 x0 x3) H8:drop n O c2 (CHead x2 x0 x3) H9:csubst0 (minus i (s x0 n)) v x1 x2 
                                  the thesis becomes 
                                  or4
                                    getl n c2 e
                                    ex3_4
                                      B
                                      C
                                      T
                                      T
                                      λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                      λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                      λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                    ex3_4
                                      B
                                      C
                                      C
                                      T
                                      λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                      λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                      λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                    ex4_5
                                      B
                                      C
                                      C
                                      T
                                      T
                                      λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                      λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                      λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                      λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                     (H10
                                        we proceed by induction on H7 to prove clear (CHead x1 x0 x3) e
                                           case refl_equal : 
                                              the thesis becomes the hypothesis H4
clear (CHead x1 x0 x3) e
                                     end of H10
                                        assume bB
                                         suppose H11drop n O c2 (CHead x2 (Bind b) x3)
                                         suppose H12csubst0 (minus i (s (Bind b) n)) v x1 x2
                                         suppose H13clear (CHead x1 (Bind b) x3) e
                                           (h1
                                              (h1
                                                 by (refl_equal . .)
eq C (CHead x1 (Bind b) x3) (CHead x1 (Bind b) x3)
                                              end of h1
                                              (h2
                                                 by (clear_bind . . .)
                                                 we proved clear (CHead x2 (Bind b) x3) (CHead x2 (Bind b) x3)
                                                 by (getl_intro . . . . H11 previous)
getl n c2 (CHead x2 (Bind b) x3)
                                              end of h2
                                              (h3
                                                 consider H12
                                                 we proved csubst0 (minus i (s (Bind b) n)) v x1 x2
csubst0 (minus i (S n)) v x1 x2
                                              end of h3
                                              by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                              we proved 
                                                 ex3_4
                                                   B
                                                   C
                                                   C
                                                   T
                                                   λb0:B.λe1:C.λ:C.λu:T.eq C (CHead x1 (Bind b) x3) (CHead e1 (Bind b0) u)
                                                   λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                   λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              by (or4_intro2 . . . . previous)

                                                 or4
                                                   getl n c2 (CHead x1 (Bind b) x3)
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe0:C.λu:T.λ:T.eq C (CHead x1 (Bind b) x3) (CHead e0 (Bind b0) u)
                                                     λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.eq C (CHead x1 (Bind b) x3) (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x1 (Bind b) x3) (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                           end of h1
                                           (h2
                                              by (clear_gen_bind . . . . H13)
eq C e (CHead x1 (Bind b) x3)
                                           end of h2
                                           by (eq_ind_r . . . h1 . h2)
                                           we proved 
                                              or4
                                                getl n c2 e
                                                ex3_4
                                                  B
                                                  C
                                                  T
                                                  T
                                                  λb0:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b0) u)
                                                  λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                ex3_4
                                                  B
                                                  C
                                                  C
                                                  T
                                                  λb0:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b0) u)
                                                  λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                ex4_5
                                                  B
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b0) u)
                                                  λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                           H11:drop n O c2 (CHead x2 (Bind b) x3)
                                             .H12:csubst0 (minus i (s (Bind b) n)) v x1 x2
                                               .H13:clear (CHead x1 (Bind b) x3) e
                                                 .or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b0) u)
                                                     λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                        assume fF
                                         suppose H11drop n O c2 (CHead x2 (Flat f) x3)
                                         suppose H12csubst0 (minus i (s (Flat f) n)) v x1 x2
                                         suppose H13clear (CHead x1 (Flat f) x3) e
                                           (H14
                                              by (minus_x_Sy . . H)
                                              we proved eq nat (minus i n) (S (minus i (S n)))
                                              we proceed by induction on the previous result to prove csubst0 (S (minus i (S n))) v x1 x2
                                                 case refl_equal : 
                                                    the thesis becomes csubst0 (minus i n) v x1 x2
                                                       consider H12
                                                       we proved csubst0 (minus i (s (Flat f) n)) v x1 x2
csubst0 (minus i n) v x1 x2
csubst0 (S (minus i (S n))) v x1 x2
                                           end of H14
                                           (H15
                                              by (clear_gen_flat . . . . H13)
                                              we proved clear x1 e
                                              by (csubst0_clear_S . . . . H14 . previous)

                                                 or4
                                                   clear x2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe:C.λu1:T.λ:T.eq C e (CHead e (Bind b) u1)
                                                     λb:B.λe:C.λ:T.λu2:T.clear x2 (CHead e (Bind b) u2)
                                                     λ:B.λ:C.λu1:T.λu2:T.subst0 (minus i (S n)) v u1 u2
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.clear x2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu1:T.λ:T.eq C e (CHead e1 (Bind b) u1)
                                                     λb:B.λ:C.λe2:C.λ:T.λu2:T.clear x2 (CHead e2 (Bind b) u2)
                                                     λ:B.λ:C.λ:C.λu1:T.λu2:T.subst0 (minus i (S n)) v u1 u2
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                           end of H15
                                           we proceed by induction on H15 to prove 
                                              or4
                                                getl n c2 e
                                                ex3_4
                                                  B
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                  λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                ex3_4
                                                  B
                                                  C
                                                  C
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                ex4_5
                                                  B
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              case or4_intro0 : H16:clear x2 e 
                                                 the thesis becomes 
                                                 or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                    by (clear_flat . . H16 . .)
                                                    we proved clear (CHead x2 (Flat f) x3) e
                                                    by (getl_intro . . . . H11 previous)
                                                    we proved getl n c2 e
                                                    by (or4_intro0 . . . . previous)

                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              case or4_intro1 : H16:ex3_4 B C T T λb:B.λe0:C.λu1:T.λ:T.eq C e (CHead e0 (Bind b) u1) λb:B.λe0:C.λ:T.λu2:T.clear x2 (CHead e0 (Bind b) u2) λ:B.λ:C.λu1:T.λu2:T.subst0 (minus i (S n)) v u1 u2 
                                                 the thesis becomes 
                                                 or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                    we proceed by induction on H16 to prove 
                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                       case ex3_4_intro : x4:B x5:C x6:T x7:T H17:eq C e (CHead x5 (Bind x4) x6) H18:clear x2 (CHead x5 (Bind x4) x7) H19:subst0 (minus i (S n)) v x6 x7 
                                                          the thesis becomes 
                                                          or4
                                                            getl n c2 e
                                                            ex3_4
                                                              B
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                              λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                              λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                            ex3_4
                                                              B
                                                              C
                                                              C
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                              λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                            ex4_5
                                                              B
                                                              C
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                              λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                              λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             (h1
                                                                by (refl_equal . .)
eq C (CHead x5 (Bind x4) x6) (CHead x5 (Bind x4) x6)
                                                             end of h1
                                                             (h2
                                                                by (clear_flat . . H18 . .)
                                                                we proved clear (CHead x2 (Flat f) x3) (CHead x5 (Bind x4) x7)
                                                                by (getl_intro . . . . H11 previous)
getl n c2 (CHead x5 (Bind x4) x7)
                                                             end of h2
                                                             by (ex3_4_intro . . . . . . . . . . . h1 h2 H19)
                                                             we proved 
                                                                ex3_4
                                                                  B
                                                                  C
                                                                  T
                                                                  T
                                                                  λb:B.λe0:C.λu:T.λ:T.eq C (CHead x5 (Bind x4) x6) (CHead e0 (Bind b) u)
                                                                  λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                             by (or4_intro1 . . . . previous)
                                                             we proved 
                                                                or4
                                                                  getl n c2 (CHead x5 (Bind x4) x6)
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C (CHead x5 (Bind x4) x6) (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C (CHead x5 (Bind x4) x6) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x5 (Bind x4) x6) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (eq_ind_r . . . previous . H17)

                                                                or4
                                                                  getl n c2 e
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              case or4_intro2 : H16:ex3_4 B C C T λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u) λb:B.λ:C.λe2:C.λu:T.clear x2 (CHead e2 (Bind b) u) λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2 
                                                 the thesis becomes 
                                                 or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                    we proceed by induction on H16 to prove 
                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                       case ex3_4_intro : x4:B x5:C x6:C x7:T H17:eq C e (CHead x5 (Bind x4) x7) H18:clear x2 (CHead x6 (Bind x4) x7) H19:csubst0 (minus i (S n)) v x5 x6 
                                                          the thesis becomes 
                                                          or4
                                                            getl n c2 e
                                                            ex3_4
                                                              B
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                              λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                              λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                            ex3_4
                                                              B
                                                              C
                                                              C
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                              λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                            ex4_5
                                                              B
                                                              C
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                              λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                              λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             (h1
                                                                by (refl_equal . .)
eq C (CHead x5 (Bind x4) x7) (CHead x5 (Bind x4) x7)
                                                             end of h1
                                                             (h2
                                                                by (clear_flat . . H18 . .)
                                                                we proved clear (CHead x2 (Flat f) x3) (CHead x6 (Bind x4) x7)
                                                                by (getl_intro . . . . H11 previous)
getl n c2 (CHead x6 (Bind x4) x7)
                                                             end of h2
                                                             by (ex3_4_intro . . . . . . . . . . . h1 h2 H19)
                                                             we proved 
                                                                ex3_4
                                                                  B
                                                                  C
                                                                  C
                                                                  T
                                                                  λb:B.λe1:C.λ:C.λu:T.eq C (CHead x5 (Bind x4) x7) (CHead e1 (Bind b) u)
                                                                  λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (or4_intro2 . . . . previous)
                                                             we proved 
                                                                or4
                                                                  getl n c2 (CHead x5 (Bind x4) x7)
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C (CHead x5 (Bind x4) x7) (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C (CHead x5 (Bind x4) x7) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x5 (Bind x4) x7) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (eq_ind_r . . . previous . H17)

                                                                or4
                                                                  getl n c2 e
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              case or4_intro3 : H16:ex4_5 B C C T T λb:B.λe1:C.λ:C.λu1:T.λ:T.eq C e (CHead e1 (Bind b) u1) λb:B.λ:C.λe2:C.λ:T.λu2:T.clear x2 (CHead e2 (Bind b) u2) λ:B.λ:C.λ:C.λu1:T.λu2:T.subst0 (minus i (S n)) v u1 u2 λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2 
                                                 the thesis becomes 
                                                 or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                    we proceed by induction on H16 to prove 
                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                       case ex4_5_intro : x4:B x5:C x6:C x7:T x8:T H17:eq C e (CHead x5 (Bind x4) x7) H18:clear x2 (CHead x6 (Bind x4) x8) H19:subst0 (minus i (S n)) v x7 x8 H20:csubst0 (minus i (S n)) v x5 x6 
                                                          the thesis becomes 
                                                          or4
                                                            getl n c2 e
                                                            ex3_4
                                                              B
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                              λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                              λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                            ex3_4
                                                              B
                                                              C
                                                              C
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                              λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                            ex4_5
                                                              B
                                                              C
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                              λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                              λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             (h1
                                                                by (refl_equal . .)
eq C (CHead x5 (Bind x4) x7) (CHead x5 (Bind x4) x7)
                                                             end of h1
                                                             (h2
                                                                by (clear_flat . . H18 . .)
                                                                we proved clear (CHead x2 (Flat f) x3) (CHead x6 (Bind x4) x8)
                                                                by (getl_intro . . . . H11 previous)
getl n c2 (CHead x6 (Bind x4) x8)
                                                             end of h2
                                                             by (ex4_5_intro . . . . . . . . . . . . . . h1 h2 H19 H20)
                                                             we proved 
                                                                ex4_5
                                                                  B
                                                                  C
                                                                  C
                                                                  T
                                                                  T
                                                                  λb:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x5 (Bind x4) x7) (CHead e1 (Bind b) u)
                                                                  λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (or4_intro3 . . . . previous)
                                                             we proved 
                                                                or4
                                                                  getl n c2 (CHead x5 (Bind x4) x7)
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C (CHead x5 (Bind x4) x7) (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C (CHead x5 (Bind x4) x7) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x5 (Bind x4) x7) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (eq_ind_r . . . previous . H17)

                                                                or4
                                                                  getl n c2 e
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                           we proved 
                                              or4
                                                getl n c2 e
                                                ex3_4
                                                  B
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                  λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                ex3_4
                                                  B
                                                  C
                                                  C
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                ex4_5
                                                  B
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                           H11:drop n O c2 (CHead x2 (Flat f) x3)
                                             .H12:csubst0 (minus i (s (Flat f) n)) v x1 x2
                                               .H13:clear (CHead x1 (Flat f) x3) e
                                                 .or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                     by (previous . H8 H9 H10)

                                        or4
                                          getl n c2 e
                                          ex3_4
                                            B
                                            C
                                            T
                                            T
                                            λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                            λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                            λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                          ex3_4
                                            B
                                            C
                                            C
                                            T
                                            λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                            λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                            λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                          ex4_5
                                            B
                                            C
                                            C
                                            T
                                            T
                                            λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                            λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                            λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                            λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                               or4
                                 getl n c2 e
                                 ex3_4
                                   B
                                   C
                                   T
                                   T
                                   λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                   λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                   λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                 ex3_4
                                   B
                                   C
                                   C
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                   λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                 ex4_5
                                   B
                                   C
                                   C
                                   T
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                   λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                   λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                      case or4_intro3 : H6:ex4_5 K C C T T λk:K.λe1:C.λ:C.λu:T.λ:T.eq C x (CHead e1 k u) λk:K.λ:C.λe2:C.λ:T.λw:T.drop n O c2 (CHead e2 k w) λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k n)) v e1 e2 
                         the thesis becomes 
                         or4
                           getl n c2 e
                           ex3_4
                             B
                             C
                             T
                             T
                             λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                             λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                             λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                           ex3_4
                             B
                             C
                             C
                             T
                             λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                             λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                             λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                           ex4_5
                             B
                             C
                             C
                             T
                             T
                             λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                             λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                             λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                             λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                            we proceed by induction on H6 to prove 
                               or4
                                 getl n c2 e
                                 ex3_4
                                   B
                                   C
                                   T
                                   T
                                   λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                   λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                   λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                 ex3_4
                                   B
                                   C
                                   C
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                   λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                 ex4_5
                                   B
                                   C
                                   C
                                   T
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                   λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                   λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                               case ex4_5_intro : x0:K x1:C x2:C x3:T x4:T H7:eq C x (CHead x1 x0 x3) H8:drop n O c2 (CHead x2 x0 x4) H9:subst0 (minus i (s x0 n)) v x3 x4 H10:csubst0 (minus i (s x0 n)) v x1 x2 
                                  the thesis becomes 
                                  or4
                                    getl n c2 e
                                    ex3_4
                                      B
                                      C
                                      T
                                      T
                                      λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                      λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                      λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                    ex3_4
                                      B
                                      C
                                      C
                                      T
                                      λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                      λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                      λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                    ex4_5
                                      B
                                      C
                                      C
                                      T
                                      T
                                      λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                      λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                      λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                      λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                     (H11
                                        we proceed by induction on H7 to prove clear (CHead x1 x0 x3) e
                                           case refl_equal : 
                                              the thesis becomes the hypothesis H4
clear (CHead x1 x0 x3) e
                                     end of H11
                                        assume bB
                                         suppose H12drop n O c2 (CHead x2 (Bind b) x4)
                                         suppose H13subst0 (minus i (s (Bind b) n)) v x3 x4
                                         suppose H14csubst0 (minus i (s (Bind b) n)) v x1 x2
                                         suppose H15clear (CHead x1 (Bind b) x3) e
                                           (h1
                                              (h1
                                                 by (refl_equal . .)
eq C (CHead x1 (Bind b) x3) (CHead x1 (Bind b) x3)
                                              end of h1
                                              (h2
                                                 by (clear_bind . . .)
                                                 we proved clear (CHead x2 (Bind b) x4) (CHead x2 (Bind b) x4)
                                                 by (getl_intro . . . . H12 previous)
getl n c2 (CHead x2 (Bind b) x4)
                                              end of h2
                                              (h3
                                                 consider H13
                                                 we proved subst0 (minus i (s (Bind b) n)) v x3 x4
subst0 (minus i (S n)) v x3 x4
                                              end of h3
                                              (h4
                                                 consider H14
                                                 we proved csubst0 (minus i (s (Bind b) n)) v x1 x2
csubst0 (minus i (S n)) v x1 x2
                                              end of h4
                                              by (ex4_5_intro . . . . . . . . . . . . . . h1 h2 h3 h4)
                                              we proved 
                                                 ex4_5
                                                   B
                                                   C
                                                   C
                                                   T
                                                   T
                                                   λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x1 (Bind b) x3) (CHead e1 (Bind b0) u)
                                                   λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                   λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              by (or4_intro3 . . . . previous)

                                                 or4
                                                   getl n c2 (CHead x1 (Bind b) x3)
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe0:C.λu:T.λ:T.eq C (CHead x1 (Bind b) x3) (CHead e0 (Bind b0) u)
                                                     λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.eq C (CHead x1 (Bind b) x3) (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x1 (Bind b) x3) (CHead e1 (Bind b0) u)
                                                     λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                           end of h1
                                           (h2
                                              by (clear_gen_bind . . . . H15)
eq C e (CHead x1 (Bind b) x3)
                                           end of h2
                                           by (eq_ind_r . . . h1 . h2)
                                           we proved 
                                              or4
                                                getl n c2 e
                                                ex3_4
                                                  B
                                                  C
                                                  T
                                                  T
                                                  λb0:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b0) u)
                                                  λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                ex3_4
                                                  B
                                                  C
                                                  C
                                                  T
                                                  λb0:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b0) u)
                                                  λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                ex4_5
                                                  B
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b0) u)
                                                  λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                           H12:drop n O c2 (CHead x2 (Bind b) x4)
                                             .H13:subst0 (minus i (s (Bind b) n)) v x3 x4
                                               .H14:csubst0 (minus i (s (Bind b) n)) v x1 x2
                                                 .H15:clear (CHead x1 (Bind b) x3) e
                                                   .or4
                                                     getl n c2 e
                                                     ex3_4
                                                       B
                                                       C
                                                       T
                                                       T
                                                       λb0:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b0) u)
                                                       λb0:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b0) w)
                                                       λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     ex3_4
                                                       B
                                                       C
                                                       C
                                                       T
                                                       λb0:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b0) u)
                                                       λb0:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b0) u)
                                                       λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                     ex4_5
                                                       B
                                                       C
                                                       C
                                                       T
                                                       T
                                                       λb0:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b0) u)
                                                       λb0:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b0) w)
                                                       λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                       λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                        assume fF
                                         suppose H12drop n O c2 (CHead x2 (Flat f) x4)
                                         suppose subst0 (minus i (s (Flat f) n)) v x3 x4
                                         suppose H14csubst0 (minus i (s (Flat f) n)) v x1 x2
                                         suppose H15clear (CHead x1 (Flat f) x3) e
                                           (H16
                                              by (minus_x_Sy . . H)
                                              we proved eq nat (minus i n) (S (minus i (S n)))
                                              we proceed by induction on the previous result to prove csubst0 (S (minus i (S n))) v x1 x2
                                                 case refl_equal : 
                                                    the thesis becomes csubst0 (minus i n) v x1 x2
                                                       consider H14
                                                       we proved csubst0 (minus i (s (Flat f) n)) v x1 x2
csubst0 (minus i n) v x1 x2
csubst0 (S (minus i (S n))) v x1 x2
                                           end of H16
                                           (H17
                                              by (clear_gen_flat . . . . H15)
                                              we proved clear x1 e
                                              by (csubst0_clear_S . . . . H16 . previous)

                                                 or4
                                                   clear x2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe:C.λu1:T.λ:T.eq C e (CHead e (Bind b) u1)
                                                     λb:B.λe:C.λ:T.λu2:T.clear x2 (CHead e (Bind b) u2)
                                                     λ:B.λ:C.λu1:T.λu2:T.subst0 (minus i (S n)) v u1 u2
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.clear x2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu1:T.λ:T.eq C e (CHead e1 (Bind b) u1)
                                                     λb:B.λ:C.λe2:C.λ:T.λu2:T.clear x2 (CHead e2 (Bind b) u2)
                                                     λ:B.λ:C.λ:C.λu1:T.λu2:T.subst0 (minus i (S n)) v u1 u2
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                           end of H17
                                           we proceed by induction on H17 to prove 
                                              or4
                                                getl n c2 e
                                                ex3_4
                                                  B
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                  λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                ex3_4
                                                  B
                                                  C
                                                  C
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                ex4_5
                                                  B
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              case or4_intro0 : H18:clear x2 e 
                                                 the thesis becomes 
                                                 or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                    by (clear_flat . . H18 . .)
                                                    we proved clear (CHead x2 (Flat f) x4) e
                                                    by (getl_intro . . . . H12 previous)
                                                    we proved getl n c2 e
                                                    by (or4_intro0 . . . . previous)

                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              case or4_intro1 : H18:ex3_4 B C T T λb:B.λe0:C.λu1:T.λ:T.eq C e (CHead e0 (Bind b) u1) λb:B.λe0:C.λ:T.λu2:T.clear x2 (CHead e0 (Bind b) u2) λ:B.λ:C.λu1:T.λu2:T.subst0 (minus i (S n)) v u1 u2 
                                                 the thesis becomes 
                                                 or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                    we proceed by induction on H18 to prove 
                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                       case ex3_4_intro : x5:B x6:C x7:T x8:T H19:eq C e (CHead x6 (Bind x5) x7) H20:clear x2 (CHead x6 (Bind x5) x8) H21:subst0 (minus i (S n)) v x7 x8 
                                                          the thesis becomes 
                                                          or4
                                                            getl n c2 e
                                                            ex3_4
                                                              B
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                              λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                              λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                            ex3_4
                                                              B
                                                              C
                                                              C
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                              λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                            ex4_5
                                                              B
                                                              C
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                              λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                              λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             (h1
                                                                by (refl_equal . .)
eq C (CHead x6 (Bind x5) x7) (CHead x6 (Bind x5) x7)
                                                             end of h1
                                                             (h2
                                                                by (clear_flat . . H20 . .)
                                                                we proved clear (CHead x2 (Flat f) x4) (CHead x6 (Bind x5) x8)
                                                                by (getl_intro . . . . H12 previous)
getl n c2 (CHead x6 (Bind x5) x8)
                                                             end of h2
                                                             by (ex3_4_intro . . . . . . . . . . . h1 h2 H21)
                                                             we proved 
                                                                ex3_4
                                                                  B
                                                                  C
                                                                  T
                                                                  T
                                                                  λb:B.λe0:C.λu:T.λ:T.eq C (CHead x6 (Bind x5) x7) (CHead e0 (Bind b) u)
                                                                  λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                             by (or4_intro1 . . . . previous)
                                                             we proved 
                                                                or4
                                                                  getl n c2 (CHead x6 (Bind x5) x7)
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C (CHead x6 (Bind x5) x7) (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C (CHead x6 (Bind x5) x7) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x6 (Bind x5) x7) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (eq_ind_r . . . previous . H19)

                                                                or4
                                                                  getl n c2 e
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              case or4_intro2 : H18:ex3_4 B C C T λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u) λb:B.λ:C.λe2:C.λu:T.clear x2 (CHead e2 (Bind b) u) λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2 
                                                 the thesis becomes 
                                                 or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                    we proceed by induction on H18 to prove 
                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                       case ex3_4_intro : x5:B x6:C x7:C x8:T H19:eq C e (CHead x6 (Bind x5) x8) H20:clear x2 (CHead x7 (Bind x5) x8) H21:csubst0 (minus i (S n)) v x6 x7 
                                                          the thesis becomes 
                                                          or4
                                                            getl n c2 e
                                                            ex3_4
                                                              B
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                              λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                              λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                            ex3_4
                                                              B
                                                              C
                                                              C
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                              λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                            ex4_5
                                                              B
                                                              C
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                              λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                              λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             (h1
                                                                by (refl_equal . .)
eq C (CHead x6 (Bind x5) x8) (CHead x6 (Bind x5) x8)
                                                             end of h1
                                                             (h2
                                                                by (clear_flat . . H20 . .)
                                                                we proved clear (CHead x2 (Flat f) x4) (CHead x7 (Bind x5) x8)
                                                                by (getl_intro . . . . H12 previous)
getl n c2 (CHead x7 (Bind x5) x8)
                                                             end of h2
                                                             by (ex3_4_intro . . . . . . . . . . . h1 h2 H21)
                                                             we proved 
                                                                ex3_4
                                                                  B
                                                                  C
                                                                  C
                                                                  T
                                                                  λb:B.λe1:C.λ:C.λu:T.eq C (CHead x6 (Bind x5) x8) (CHead e1 (Bind b) u)
                                                                  λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (or4_intro2 . . . . previous)
                                                             we proved 
                                                                or4
                                                                  getl n c2 (CHead x6 (Bind x5) x8)
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C (CHead x6 (Bind x5) x8) (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C (CHead x6 (Bind x5) x8) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x6 (Bind x5) x8) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (eq_ind_r . . . previous . H19)

                                                                or4
                                                                  getl n c2 e
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                              case or4_intro3 : H18:ex4_5 B C C T T λb:B.λe1:C.λ:C.λu1:T.λ:T.eq C e (CHead e1 (Bind b) u1) λb:B.λ:C.λe2:C.λ:T.λu2:T.clear x2 (CHead e2 (Bind b) u2) λ:B.λ:C.λ:C.λu1:T.λu2:T.subst0 (minus i (S n)) v u1 u2 λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2 
                                                 the thesis becomes 
                                                 or4
                                                   getl n c2 e
                                                   ex3_4
                                                     B
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                     λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                     λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                   ex3_4
                                                     B
                                                     C
                                                     C
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                     λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                   ex4_5
                                                     B
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                     λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                     λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                     λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                    we proceed by induction on H18 to prove 
                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                       case ex4_5_intro : x5:B x6:C x7:C x8:T x9:T H19:eq C e (CHead x6 (Bind x5) x8) H20:clear x2 (CHead x7 (Bind x5) x9) H21:subst0 (minus i (S n)) v x8 x9 H22:csubst0 (minus i (S n)) v x6 x7 
                                                          the thesis becomes 
                                                          or4
                                                            getl n c2 e
                                                            ex3_4
                                                              B
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                              λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                              λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                            ex3_4
                                                              B
                                                              C
                                                              C
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                              λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                            ex4_5
                                                              B
                                                              C
                                                              C
                                                              T
                                                              T
                                                              λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                              λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                              λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                              λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             (h1
                                                                by (refl_equal . .)
eq C (CHead x6 (Bind x5) x8) (CHead x6 (Bind x5) x8)
                                                             end of h1
                                                             (h2
                                                                by (clear_flat . . H20 . .)
                                                                we proved clear (CHead x2 (Flat f) x4) (CHead x7 (Bind x5) x9)
                                                                by (getl_intro . . . . H12 previous)
getl n c2 (CHead x7 (Bind x5) x9)
                                                             end of h2
                                                             by (ex4_5_intro . . . . . . . . . . . . . . h1 h2 H21 H22)
                                                             we proved 
                                                                ex4_5
                                                                  B
                                                                  C
                                                                  C
                                                                  T
                                                                  T
                                                                  λb:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x6 (Bind x5) x8) (CHead e1 (Bind b) u)
                                                                  λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (or4_intro3 . . . . previous)
                                                             we proved 
                                                                or4
                                                                  getl n c2 (CHead x6 (Bind x5) x8)
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C (CHead x6 (Bind x5) x8) (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C (CHead x6 (Bind x5) x8) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x6 (Bind x5) x8) (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                             by (eq_ind_r . . . previous . H19)

                                                                or4
                                                                  getl n c2 e
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                                    λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                                    λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                  ex3_4
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                                    λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                                  ex4_5
                                                                    B
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                                    λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                                    λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                                    λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                                       or4
                                                         getl n c2 e
                                                         ex3_4
                                                           B
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                           λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                           λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                         ex3_4
                                                           B
                                                           C
                                                           C
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                           λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                         ex4_5
                                                           B
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                           λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                           λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                           λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                           we proved 
                                              or4
                                                getl n c2 e
                                                ex3_4
                                                  B
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                  λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                  λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                ex3_4
                                                  B
                                                  C
                                                  C
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                  λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                ex4_5
                                                  B
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                  λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                  λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                  λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                                           H12:drop n O c2 (CHead x2 (Flat f) x4)
                                             .subst0 (minus i (s (Flat f) n)) v x3 x4
                                               H14:csubst0 (minus i (s (Flat f) n)) v x1 x2
                                                    .H15:clear (CHead x1 (Flat f) x3) e
                                                      .or4
                                                        getl n c2 e
                                                        ex3_4
                                                          B
                                                          C
                                                          T
                                                          T
                                                          λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                                          λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                                          λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                        ex3_4
                                                          B
                                                          C
                                                          C
                                                          T
                                                          λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                                          λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                                          λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                                        ex4_5
                                                          B
                                                          C
                                                          C
                                                          T
                                                          T
                                                          λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                                          λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                                          λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                                          λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
                                     by (previous . H8 H9 H10 H11)

                                        or4
                                          getl n c2 e
                                          ex3_4
                                            B
                                            C
                                            T
                                            T
                                            λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                            λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                            λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                          ex3_4
                                            B
                                            C
                                            C
                                            T
                                            λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                            λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                            λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                          ex4_5
                                            B
                                            C
                                            C
                                            T
                                            T
                                            λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                            λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                            λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                            λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                               or4
                                 getl n c2 e
                                 ex3_4
                                   B
                                   C
                                   T
                                   T
                                   λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                   λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                   λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                 ex3_4
                                   B
                                   C
                                   C
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                   λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                 ex4_5
                                   B
                                   C
                                   C
                                   T
                                   T
                                   λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                   λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                   λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                   λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2

                      or4
                        getl n c2 e
                        ex3_4
                          B
                          C
                          T
                          T
                          λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                          λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                          λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                        ex3_4
                          B
                          C
                          C
                          T
                          λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                          λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                          λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                        ex4_5
                          B
                          C
                          C
                          T
                          T
                          λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                          λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                          λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                          λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
          we proved 
             or4
               getl n c2 e
               ex3_4
                 B
                 C
                 T
                 T
                 λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                 λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                 λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
               ex3_4
                 B
                 C
                 C
                 T
                 λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                 λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                 λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
               ex4_5
                 B
                 C
                 C
                 T
                 T
                 λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                 λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                 λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                 λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2
       we proved 
          i:nat
            .n:nat
              .lt n i
                c1:C
                     .c2:C
                       .v:T
                         .csubst0 i v c1 c2
                           e:C
                                .getl n c1 e
                                  (or4
                                       getl n c2 e
                                       ex3_4
                                         B
                                         C
                                         T
                                         T
                                         λb:B.λe0:C.λu:T.λ:T.eq C e (CHead e0 (Bind b) u)
                                         λb:B.λe0:C.λ:T.λw:T.getl n c2 (CHead e0 (Bind b) w)
                                         λ:B.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                       ex3_4
                                         B
                                         C
                                         C
                                         T
                                         λb:B.λe1:C.λ:C.λu:T.eq C e (CHead e1 (Bind b) u)
                                         λb:B.λ:C.λe2:C.λu:T.getl n c2 (CHead e2 (Bind b) u)
                                         λ:B.λe1:C.λe2:C.λ:T.csubst0 (minus i (S n)) v e1 e2
                                       ex4_5
                                         B
                                         C
                                         C
                                         T
                                         T
                                         λb:B.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 (Bind b) u)
                                         λb:B.λ:C.λe2:C.λ:T.λw:T.getl n c2 (CHead e2 (Bind b) w)
                                         λ:B.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (S n)) v u w
                                         λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (S n)) v e1 e2)