DEFINITION csubst0_getl_ge_back()
TYPE =
       i:nat
         .n:nat.(le i n)c1:C.c2:C.v:T.(csubst0 i v c1 c2)e:C.(getl n c2 e)(getl n c1 e)
BODY =
        assume inat
        assume nnat
        suppose Hle i n
        assume c1C
        assume c2C
        assume vT
        suppose H0csubst0 i v c1 c2
        assume eC
        suppose H1getl n c2 e
          (H2
             by (getl_gen_all . . . H1)
ex2 C λe:C.drop n O c2 e λe:C.clear e e
          end of H2
          we proceed by induction on H2 to prove getl n c1 e
             case ex_intro2 : x:C H3:drop n O c2 x H4:clear x e 
                the thesis becomes getl n c1 e
                   (h1
                      suppose H5lt i n
                         by (csubst0_drop_gt_back . . H5 . . . H0 . H3)
                         we proved drop n O c1 x
                         by (getl_intro . . . . previous H4)
                         we proved getl n c1 e
(lt i n)(getl n c1 e)
                   end of h1
                   (h2
                      suppose H5eq nat i n
                         (H6
                            by (eq_ind_r . . . H3 . H5)
drop i O c2 x
                         end of H6
                         we proceed by induction on H5 to prove getl n c1 e
                            case refl_equal : 
                               the thesis becomes getl i c1 e
                                  (H8
                                     by (csubst0_drop_eq_back . . . . H0 . H6)

                                        or4
                                          drop i O c1 x
                                          ex3_4
                                            F
                                            C
                                            T
                                            T
                                            λf:F.λe0:C.λ:T.λu2:T.eq C x (CHead e0 (Flat f) u2)
                                            λf:F.λe0:C.λu1:T.λ:T.drop i O c1 (CHead e0 (Flat f) u1)
                                            λ:F.λ:C.λu1:T.λu2:T.subst0 O v u1 u2
                                          ex3_4
                                            F
                                            C
                                            C
                                            T
                                            λf:F.λ:C.λe2:C.λu:T.eq C x (CHead e2 (Flat f) u)
                                            λf:F.λe1:C.λ:C.λu:T.drop i O c1 (CHead e1 (Flat f) u)
                                            λ:F.λe1:C.λe2:C.λ:T.csubst0 O v e1 e2
                                          ex4_5
                                            F
                                            C
                                            C
                                            T
                                            T
                                            λf:F.λ:C.λe2:C.λ:T.λu2:T.eq C x (CHead e2 (Flat f) u2)
                                            λf:F.λe1:C.λ:C.λu1:T.λ:T.drop i O c1 (CHead e1 (Flat f) u1)
                                            λ:F.λ:C.λ:C.λu1:T.λu2:T.subst0 O v u1 u2
                                            λ:F.λe1:C.λe2:C.λ:T.λ:T.csubst0 O v e1 e2
                                  end of H8
                                  we proceed by induction on H8 to prove getl i c1 e
                                     case or4_intro0 : H9:drop i O c1 x 
                                        the thesis becomes getl i c1 e
                                           by (getl_intro . . . . H9 H4)
getl i c1 e
                                     case or4_intro1 : H9:ex3_4 F C T T λf:F.λe0:C.λ:T.λu2:T.eq C x (CHead e0 (Flat f) u2) λf:F.λe0:C.λu1:T.λ:T.drop i O c1 (CHead e0 (Flat f) u1) λ:F.λ:C.λu1:T.λu2:T.subst0 O v u1 u2 
                                        the thesis becomes getl i c1 e
                                           we proceed by induction on H9 to prove getl i c1 e
                                              case ex3_4_intro : x0:F x1:C x2:T x3:T H10:eq C x (CHead x1 (Flat x0) x3) H11:drop i O c1 (CHead x1 (Flat x0) x2) :subst0 O v x2 x3 
                                                 the thesis becomes getl i c1 e
                                                    (H13
                                                       we proceed by induction on H10 to prove clear (CHead x1 (Flat x0) x3) e
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H4
clear (CHead x1 (Flat x0) x3) e
                                                    end of H13
                                                    by (clear_gen_flat . . . . H13)
                                                    we proved clear x1 e
                                                    by (clear_flat . . previous . .)
                                                    we proved clear (CHead x1 (Flat x0) x2) e
                                                    by (getl_intro . . . . H11 previous)
getl i c1 e
getl i c1 e
                                     case or4_intro2 : H9:ex3_4 F C C T λf:F.λ:C.λe2:C.λu:T.eq C x (CHead e2 (Flat f) u) λf:F.λe1:C.λ:C.λu:T.drop i O c1 (CHead e1 (Flat f) u) λ:F.λe1:C.λe2:C.λ:T.csubst0 O v e1 e2 
                                        the thesis becomes getl i c1 e
                                           we proceed by induction on H9 to prove getl i c1 e
                                              case ex3_4_intro : x0:F x1:C x2:C x3:T H10:eq C x (CHead x2 (Flat x0) x3) H11:drop i O c1 (CHead x1 (Flat x0) x3) H12:csubst0 O v x1 x2 
                                                 the thesis becomes getl i c1 e
                                                    (H13
                                                       we proceed by induction on H10 to prove clear (CHead x2 (Flat x0) x3) e
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H4
clear (CHead x2 (Flat x0) x3) e
                                                    end of H13
                                                    by (clear_gen_flat . . . . H13)
                                                    we proved clear x2 e
                                                    by (csubst0_clear_O_back . . . H12 . previous)
                                                    we proved clear x1 e
                                                    by (clear_flat . . previous . .)
                                                    we proved clear (CHead x1 (Flat x0) x3) e
                                                    by (getl_intro . . . . H11 previous)
getl i c1 e
getl i c1 e
                                     case or4_intro3 : H9:ex4_5 F C C T T λf:F.λ:C.λe2:C.λ:T.λu2:T.eq C x (CHead e2 (Flat f) u2) λf:F.λe1:C.λ:C.λu1:T.λ:T.drop i O c1 (CHead e1 (Flat f) u1) λ:F.λ:C.λ:C.λu1:T.λu2:T.subst0 O v u1 u2 λ:F.λe1:C.λe2:C.λ:T.λ:T.csubst0 O v e1 e2 
                                        the thesis becomes getl i c1 e
                                           we proceed by induction on H9 to prove getl i c1 e
                                              case ex4_5_intro : x0:F x1:C x2:C x3:T x4:T H10:eq C x (CHead x2 (Flat x0) x4) H11:drop i O c1 (CHead x1 (Flat x0) x3) :subst0 O v x3 x4 H13:csubst0 O v x1 x2 
                                                 the thesis becomes getl i c1 e
                                                    (H14
                                                       we proceed by induction on H10 to prove clear (CHead x2 (Flat x0) x4) e
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H4
clear (CHead x2 (Flat x0) x4) e
                                                    end of H14
                                                    by (clear_gen_flat . . . . H14)
                                                    we proved clear x2 e
                                                    by (csubst0_clear_O_back . . . H13 . previous)
                                                    we proved clear x1 e
                                                    by (clear_flat . . previous . .)
                                                    we proved clear (CHead x1 (Flat x0) x3) e
                                                    by (getl_intro . . . . H11 previous)
getl i c1 e
getl i c1 e
getl i c1 e
                         we proved getl n c1 e
(eq nat i n)(getl n c1 e)
                   end of h2
                   (h3
                      suppose H5lt n i
                         by (le_lt_false . . H H5 .)
                         we proved getl n c1 e
(lt n i)(getl n c1 e)
                   end of h3
                   by (lt_eq_gt_e . . . h1 h2 h3)
getl n c1 e
          we proved getl n c1 e
       we proved 
          i:nat
            .n:nat.(le i n)c1:C.c2:C.v:T.(csubst0 i v c1 c2)e:C.(getl n c2 e)(getl n c1 e)