DEFINITION csubst0_drop_lt()
TYPE =
∀n:nat
.∀i:nat
.lt n i
→∀c1:C
.∀c2:C
.∀v:T
.csubst0 i v c1 c2
→∀e:C
.drop n O c1 e
→(or4
drop n O c2 e
ex3_4
K
C
T
T
λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
λk:K.λe0:C.λ:T.λw:T.drop n O c2 (CHead e0 k w)
λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
ex3_4
K
C
C
T
λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
λk:K.λ:C.λe2:C.λu:T.drop n O c2 (CHead e2 k u)
λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k n)) v e1 e2
ex4_5
K
C
C
T
T
λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
λk:K.λ:C.λe2:C.λ:T.λw:T.drop n O c2 (CHead e2 k w)
λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k n)) v e1 e2)
BODY =
Show proof