DEFINITION csubst0_drop_lt()
TYPE =
       n:nat
         .i:nat
           .lt n i
             c1:C
                  .c2:C
                    .v:T
                      .csubst0 i v c1 c2
                        e:C
                             .drop n O c1 e
                               (or4
                                    drop n O c2 e
                                    ex3_4
                                      K
                                      C
                                      T
                                      T
                                      λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                      λk:K.λe0:C.λ:T.λw:T.drop n O c2 (CHead e0 k w)
                                      λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                                    ex3_4
                                      K
                                      C
                                      C
                                      T
                                      λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                      λk:K.λ:C.λe2:C.λu:T.drop n O c2 (CHead e2 k u)
                                      λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k n)) v e1 e2
                                    ex4_5
                                      K
                                      C
                                      C
                                      T
                                      T
                                      λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                      λk:K.λ:C.λe2:C.λ:T.λw:T.drop n O c2 (CHead e2 k w)
                                      λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                                      λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k n)) v e1 e2)
BODY =
       assume nnat
          we proceed by induction on n to prove 
             i:nat
               .lt n i
                 c1:C
                      .c2:C
                        .v:T
                          .csubst0 i v c1 c2
                            e:C
                                 .drop n O c1 e
                                   (or4
                                        drop n O c2 e
                                        ex3_4
                                          K
                                          C
                                          T
                                          T
                                          λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                          λk:K.λe0:C.λ:T.λw:T.drop n O c2 (CHead e0 k w)
                                          λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                                        ex3_4
                                          K
                                          C
                                          C
                                          T
                                          λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                          λk:K.λ:C.λe2:C.λu:T.drop n O c2 (CHead e2 k u)
                                          λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k n)) v e1 e2
                                        ex4_5
                                          K
                                          C
                                          C
                                          T
                                          T
                                          λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                          λk:K.λ:C.λe2:C.λ:T.λw:T.drop n O c2 (CHead e2 k w)
                                          λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                                          λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k n)) v e1 e2)
             case O : 
                the thesis becomes 
                i:nat
                  .lt O i
                    c1:C
                         .c2:C
                           .v:T
                             .csubst0 i v c1 c2
                               e:C
                                    .drop O O c1 e
                                      (or4
                                           drop O O c2 e
                                           ex3_4
                                             K
                                             C
                                             T
                                             T
                                             λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                             λk:K.λe0:C.λ:T.λw:T.drop O O c2 (CHead e0 k w)
                                             λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                           ex3_4
                                             K
                                             C
                                             C
                                             T
                                             λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                             λk:K.λ:C.λe2:C.λu:T.drop O O c2 (CHead e2 k u)
                                             λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k O)) v e1 e2
                                           ex4_5
                                             K
                                             C
                                             C
                                             T
                                             T
                                             λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                             λk:K.λ:C.λe2:C.λ:T.λw:T.drop O O c2 (CHead e2 k w)
                                             λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                             λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k O)) v e1 e2)
                    assume inat
                    suppose lt O i
                    assume c1C
                    assume c2C
                    assume vT
                    suppose H0csubst0 i v c1 c2
                    assume eC
                    suppose H1drop O O c1 e
                      by (drop_gen_refl . . H1)
                      we proved eq C c1 e
                      we proceed by induction on the previous result to prove 
                         or4
                           drop O O c2 e
                           ex3_4
                             K
                             C
                             T
                             T
                             λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                             λk:K.λe0:C.λ:T.λw:T.drop O O c2 (CHead e0 k w)
                             λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                           ex3_4
                             K
                             C
                             C
                             T
                             λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                             λk:K.λ:C.λe2:C.λu:T.drop O O c2 (CHead e2 k u)
                             λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k O)) v e1 e2
                           ex4_5
                             K
                             C
                             C
                             T
                             T
                             λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                             λk:K.λ:C.λe2:C.λ:T.λw:T.drop O O c2 (CHead e2 k w)
                             λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                             λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k O)) v e1 e2
                         case refl_equal : 
                            the thesis becomes 
                            or4
                              drop O O c2 c1
                              ex3_4
                                K
                                C
                                T
                                T
                                λk:K.λe0:C.λu:T.λ:T.eq C c1 (CHead e0 k u)
                                λk:K.λe0:C.λ:T.λw:T.drop O O c2 (CHead e0 k w)
                                λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                              ex3_4
                                K
                                C
                                C
                                T
                                λk:K.λe1:C.λ:C.λu:T.eq C c1 (CHead e1 k u)
                                λk:K.λ:C.λe2:C.λu:T.drop O O c2 (CHead e2 k u)
                                λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k O)) v e1 e2
                              ex4_5
                                K
                                C
                                C
                                T
                                T
                                λk:K.λe1:C.λ:C.λu:T.λ:T.eq C c1 (CHead e1 k u)
                                λk:K.λ:C.λe2:C.λ:T.λw:T.drop O O c2 (CHead e2 k w)
                                λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k O)) v e1 e2
                               we proceed by induction on H0 to prove 
                                  or4
                                    drop O O c2 c1
                                    ex3_4
                                      K
                                      C
                                      T
                                      T
                                      λk:K.λe0:C.λu:T.λ:T.eq C c1 (CHead e0 k u)
                                      λk:K.λe0:C.λ:T.λw:T.drop O O c2 (CHead e0 k w)
                                      λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                    ex3_4
                                      K
                                      C
                                      C
                                      T
                                      λk:K.λe1:C.λ:C.λu:T.eq C c1 (CHead e1 k u)
                                      λk:K.λ:C.λe2:C.λu:T.drop O O c2 (CHead e2 k u)
                                      λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k O)) v e1 e2
                                    ex4_5
                                      K
                                      C
                                      C
                                      T
                                      T
                                      λk:K.λe1:C.λ:C.λu:T.λ:T.eq C c1 (CHead e1 k u)
                                      λk:K.λ:C.λe2:C.λ:T.λw:T.drop O O c2 (CHead e2 k w)
                                      λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                      λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k O)) v e1 e2
                                  case csubst0_snd : k:K i0:nat v0:T u1:T u2:T H2:subst0 i0 v0 u1 u2 c:C 
                                     the thesis becomes 
                                     or4
                                       drop O O (CHead c k u2) (CHead c k u1)
                                       ex3_4
                                         K
                                         C
                                         T
                                         T
                                         λk0:K.λe0:C.λu:T.λ:T.eq C (CHead c k u1) (CHead e0 k0 u)
                                         λk0:K.λe0:C.λ:T.λw:T.drop O O (CHead c k u2) (CHead e0 k0 w)
                                         λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                       ex3_4
                                         K
                                         C
                                         C
                                         T
                                         λk0:K.λe1:C.λ:C.λu:T.eq C (CHead c k u1) (CHead e1 k0 u)
                                         λk0:K.λ:C.λe2:C.λu:T.drop O O (CHead c k u2) (CHead e2 k0 u)
                                         λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                       ex4_5
                                         K
                                         C
                                         C
                                         T
                                         T
                                         λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead c k u1) (CHead e1 k0 u)
                                         λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O (CHead c k u2) (CHead e2 k0 w)
                                         λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                         λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                        (H3
                                           by (s_arith0 . .)
                                           we proved eq nat (minus (s k i0) (s k O)) i0
                                           by (eq_ind_r . . . H2 . previous)
subst0 (minus (s k i0) (s k O)) v0 u1 u2
                                        end of H3
                                        (h1
                                           by (refl_equal . .)
eq C (CHead c k u1) (CHead c k u1)
                                        end of h1
                                        (h2
                                           by (drop_refl .)
drop O O (CHead c k u2) (CHead c k u2)
                                        end of h2
                                        by (ex3_4_intro . . . . . . . . . . . h1 h2 H3)
                                        we proved 
                                           ex3_4
                                             K
                                             C
                                             T
                                             T
                                             λk0:K.λe0:C.λu:T.λ:T.eq C (CHead c k u1) (CHead e0 k0 u)
                                             λk0:K.λe0:C.λ:T.λw:T.drop O O (CHead c k u2) (CHead e0 k0 w)
                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                        by (or4_intro1 . . . . previous)

                                           or4
                                             drop O O (CHead c k u2) (CHead c k u1)
                                             ex3_4
                                               K
                                               C
                                               T
                                               T
                                               λk0:K.λe0:C.λu:T.λ:T.eq C (CHead c k u1) (CHead e0 k0 u)
                                               λk0:K.λe0:C.λ:T.λw:T.drop O O (CHead c k u2) (CHead e0 k0 w)
                                               λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                             ex3_4
                                               K
                                               C
                                               C
                                               T
                                               λk0:K.λe1:C.λ:C.λu:T.eq C (CHead c k u1) (CHead e1 k0 u)
                                               λk0:K.λ:C.λe2:C.λu:T.drop O O (CHead c k u2) (CHead e2 k0 u)
                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                             ex4_5
                                               K
                                               C
                                               C
                                               T
                                               T
                                               λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead c k u1) (CHead e1 k0 u)
                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O (CHead c k u2) (CHead e2 k0 w)
                                               λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                  case csubst0_fst : k:K i0:nat c3:C c4:C v0:T H2:csubst0 i0 v0 c3 c4 u:T 
                                     the thesis becomes 
                                     or4
                                       drop O O (CHead c4 k u) (CHead c3 k u)
                                       ex3_4
                                         K
                                         C
                                         T
                                         T
                                         λk0:K.λe0:C.λu0:T.λ:T.eq C (CHead c3 k u) (CHead e0 k0 u0)
                                         λk0:K.λe0:C.λ:T.λw:T.drop O O (CHead c4 k u) (CHead e0 k0 w)
                                         λk0:K.λ:C.λu0:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u0 w
                                       ex3_4
                                         K
                                         C
                                         C
                                         T
                                         λk0:K.λe1:C.λ:C.λu0:T.eq C (CHead c3 k u) (CHead e1 k0 u0)
                                         λk0:K.λ:C.λe2:C.λu0:T.drop O O (CHead c4 k u) (CHead e2 k0 u0)
                                         λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                       ex4_5
                                         K
                                         C
                                         C
                                         T
                                         T
                                         λk0:K.λe1:C.λ:C.λu0:T.λ:T.eq C (CHead c3 k u) (CHead e1 k0 u0)
                                         λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O (CHead c4 k u) (CHead e2 k0 w)
                                         λk0:K.λ:C.λ:C.λu0:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u0 w
                                         λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                     (H3) by induction hypothesis we know 
                                        or4
                                          drop O O c4 c3
                                          ex3_4
                                            K
                                            C
                                            T
                                            T
                                            λk0:K.λe0:C.λu:T.λ:T.eq C c3 (CHead e0 k0 u)
                                            λk0:K.λe0:C.λ:T.λw:T.drop O O c4 (CHead e0 k0 w)
                                            λk0:K.λ:C.λu:T.λw:T.subst0 (minus i0 (s k0 O)) v0 u w
                                          ex3_4
                                            K
                                            C
                                            C
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.eq C c3 (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λu:T.drop O O c4 (CHead e2 k0 u)
                                            λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i0 (s k0 O)) v0 e1 e2
                                          ex4_5
                                            K
                                            C
                                            C
                                            T
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C c3 (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O c4 (CHead e2 k0 w)
                                            λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i0 (s k0 O)) v0 u w
                                            λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i0 (s k0 O)) v0 e1 e2
                                        (H4
                                           by (s_arith0 . .)
                                           we proved eq nat (minus (s k i0) (s k O)) i0
                                           by (eq_ind_r . . . H2 . previous)
csubst0 (minus (s k i0) (s k O)) v0 c3 c4
                                        end of H4
                                        (h1
                                           by (refl_equal . .)
eq C (CHead c3 k u) (CHead c3 k u)
                                        end of h1
                                        (h2
                                           by (drop_refl .)
drop O O (CHead c4 k u) (CHead c4 k u)
                                        end of h2
                                        by (ex3_4_intro . . . . . . . . . . . h1 h2 H4)
                                        we proved 
                                           ex3_4
                                             K
                                             C
                                             C
                                             T
                                             λk0:K.λe1:C.λ:C.λu0:T.eq C (CHead c3 k u) (CHead e1 k0 u0)
                                             λk0:K.λ:C.λe2:C.λu0:T.drop O O (CHead c4 k u) (CHead e2 k0 u0)
                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                        by (or4_intro2 . . . . previous)

                                           or4
                                             drop O O (CHead c4 k u) (CHead c3 k u)
                                             ex3_4
                                               K
                                               C
                                               T
                                               T
                                               λk0:K.λe0:C.λu0:T.λ:T.eq C (CHead c3 k u) (CHead e0 k0 u0)
                                               λk0:K.λe0:C.λ:T.λw:T.drop O O (CHead c4 k u) (CHead e0 k0 w)
                                               λk0:K.λ:C.λu0:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u0 w
                                             ex3_4
                                               K
                                               C
                                               C
                                               T
                                               λk0:K.λe1:C.λ:C.λu0:T.eq C (CHead c3 k u) (CHead e1 k0 u0)
                                               λk0:K.λ:C.λe2:C.λu0:T.drop O O (CHead c4 k u) (CHead e2 k0 u0)
                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                             ex4_5
                                               K
                                               C
                                               C
                                               T
                                               T
                                               λk0:K.λe1:C.λ:C.λu0:T.λ:T.eq C (CHead c3 k u) (CHead e1 k0 u0)
                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O (CHead c4 k u) (CHead e2 k0 w)
                                               λk0:K.λ:C.λ:C.λu0:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u0 w
                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                  case csubst0_both : k:K i0:nat v0:T u1:T u2:T H2:subst0 i0 v0 u1 u2 c3:C c4:C H3:csubst0 i0 v0 c3 c4 
                                     the thesis becomes 
                                     or4
                                       drop O O (CHead c4 k u2) (CHead c3 k u1)
                                       ex3_4
                                         K
                                         C
                                         T
                                         T
                                         λk0:K.λe0:C.λu:T.λ:T.eq C (CHead c3 k u1) (CHead e0 k0 u)
                                         λk0:K.λe0:C.λ:T.λw:T.drop O O (CHead c4 k u2) (CHead e0 k0 w)
                                         λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                       ex3_4
                                         K
                                         C
                                         C
                                         T
                                         λk0:K.λe1:C.λ:C.λu:T.eq C (CHead c3 k u1) (CHead e1 k0 u)
                                         λk0:K.λ:C.λe2:C.λu:T.drop O O (CHead c4 k u2) (CHead e2 k0 u)
                                         λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                       ex4_5
                                         K
                                         C
                                         C
                                         T
                                         T
                                         λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead c3 k u1) (CHead e1 k0 u)
                                         λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O (CHead c4 k u2) (CHead e2 k0 w)
                                         λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                         λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                     () by induction hypothesis we know 
                                        or4
                                          drop O O c4 c3
                                          ex3_4
                                            K
                                            C
                                            T
                                            T
                                            λk0:K.λe0:C.λu:T.λ:T.eq C c3 (CHead e0 k0 u)
                                            λk0:K.λe0:C.λ:T.λw:T.drop O O c4 (CHead e0 k0 w)
                                            λk0:K.λ:C.λu:T.λw:T.subst0 (minus i0 (s k0 O)) v0 u w
                                          ex3_4
                                            K
                                            C
                                            C
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.eq C c3 (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λu:T.drop O O c4 (CHead e2 k0 u)
                                            λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i0 (s k0 O)) v0 e1 e2
                                          ex4_5
                                            K
                                            C
                                            C
                                            T
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C c3 (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O c4 (CHead e2 k0 w)
                                            λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i0 (s k0 O)) v0 u w
                                            λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i0 (s k0 O)) v0 e1 e2
                                        (H5
                                           by (s_arith0 . .)
                                           we proved eq nat (minus (s k i0) (s k O)) i0
                                           by (eq_ind_r . . . H2 . previous)
subst0 (minus (s k i0) (s k O)) v0 u1 u2
                                        end of H5
                                        (H6
                                           by (s_arith0 . .)
                                           we proved eq nat (minus (s k i0) (s k O)) i0
                                           by (eq_ind_r . . . H3 . previous)
csubst0 (minus (s k i0) (s k O)) v0 c3 c4
                                        end of H6
                                        (h1
                                           by (refl_equal . .)
eq C (CHead c3 k u1) (CHead c3 k u1)
                                        end of h1
                                        (h2
                                           by (drop_refl .)
drop O O (CHead c4 k u2) (CHead c4 k u2)
                                        end of h2
                                        by (ex4_5_intro . . . . . . . . . . . . . . h1 h2 H5 H6)
                                        we proved 
                                           ex4_5
                                             K
                                             C
                                             C
                                             T
                                             T
                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead c3 k u1) (CHead e1 k0 u)
                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O (CHead c4 k u2) (CHead e2 k0 w)
                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                        by (or4_intro3 . . . . previous)

                                           or4
                                             drop O O (CHead c4 k u2) (CHead c3 k u1)
                                             ex3_4
                                               K
                                               C
                                               T
                                               T
                                               λk0:K.λe0:C.λu:T.λ:T.eq C (CHead c3 k u1) (CHead e0 k0 u)
                                               λk0:K.λe0:C.λ:T.λw:T.drop O O (CHead c4 k u2) (CHead e0 k0 w)
                                               λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                             ex3_4
                                               K
                                               C
                                               C
                                               T
                                               λk0:K.λe1:C.λ:C.λu:T.eq C (CHead c3 k u1) (CHead e1 k0 u)
                                               λk0:K.λ:C.λe2:C.λu:T.drop O O (CHead c4 k u2) (CHead e2 k0 u)
                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2
                                             ex4_5
                                               K
                                               C
                                               C
                                               T
                                               T
                                               λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead c3 k u1) (CHead e1 k0 u)
                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop O O (CHead c4 k u2) (CHead e2 k0 w)
                                               λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k i0) (s k0 O)) v0 u w
                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k i0) (s k0 O)) v0 e1 e2

                                  or4
                                    drop O O c2 c1
                                    ex3_4
                                      K
                                      C
                                      T
                                      T
                                      λk:K.λe0:C.λu:T.λ:T.eq C c1 (CHead e0 k u)
                                      λk:K.λe0:C.λ:T.λw:T.drop O O c2 (CHead e0 k w)
                                      λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                    ex3_4
                                      K
                                      C
                                      C
                                      T
                                      λk:K.λe1:C.λ:C.λu:T.eq C c1 (CHead e1 k u)
                                      λk:K.λ:C.λe2:C.λu:T.drop O O c2 (CHead e2 k u)
                                      λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k O)) v e1 e2
                                    ex4_5
                                      K
                                      C
                                      C
                                      T
                                      T
                                      λk:K.λe1:C.λ:C.λu:T.λ:T.eq C c1 (CHead e1 k u)
                                      λk:K.λ:C.λe2:C.λ:T.λw:T.drop O O c2 (CHead e2 k w)
                                      λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                      λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k O)) v e1 e2
                      we proved 
                         or4
                           drop O O c2 e
                           ex3_4
                             K
                             C
                             T
                             T
                             λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                             λk:K.λe0:C.λ:T.λw:T.drop O O c2 (CHead e0 k w)
                             λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                           ex3_4
                             K
                             C
                             C
                             T
                             λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                             λk:K.λ:C.λe2:C.λu:T.drop O O c2 (CHead e2 k u)
                             λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k O)) v e1 e2
                           ex4_5
                             K
                             C
                             C
                             T
                             T
                             λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                             λk:K.λ:C.λe2:C.λ:T.λw:T.drop O O c2 (CHead e2 k w)
                             λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                             λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k O)) v e1 e2

                      i:nat
                        .lt O i
                          c1:C
                               .c2:C
                                 .v:T
                                   .csubst0 i v c1 c2
                                     e:C
                                          .drop O O c1 e
                                            (or4
                                                 drop O O c2 e
                                                 ex3_4
                                                   K
                                                   C
                                                   T
                                                   T
                                                   λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                                   λk:K.λe0:C.λ:T.λw:T.drop O O c2 (CHead e0 k w)
                                                   λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                                 ex3_4
                                                   K
                                                   C
                                                   C
                                                   T
                                                   λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                                   λk:K.λ:C.λe2:C.λu:T.drop O O c2 (CHead e2 k u)
                                                   λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k O)) v e1 e2
                                                 ex4_5
                                                   K
                                                   C
                                                   C
                                                   T
                                                   T
                                                   λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                                   λk:K.λ:C.λe2:C.λ:T.λw:T.drop O O c2 (CHead e2 k w)
                                                   λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k O)) v u w
                                                   λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k O)) v e1 e2)
             case S : n0:nat 
                the thesis becomes 
                i:nat
                  .H:lt (S n0) i
                    .c1:C
                      .c2:C
                        .v:T
                          .csubst0 i v c1 c2
                            e:C
                                 .drop (S n0) O c1 e
                                   (or4
                                        drop (S n0) O c2 e
                                        ex3_4
                                          K
                                          C
                                          T
                                          T
                                          λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                          λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                          λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                        ex3_4
                                          K
                                          C
                                          C
                                          T
                                          λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                          λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                          λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                        ex4_5
                                          K
                                          C
                                          C
                                          T
                                          T
                                          λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                          λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                          λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                          λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2)
                (IHn) by induction hypothesis we know 
                   i:nat
                     .lt n0 i
                       c1:C
                            .c2:C
                              .v:T
                                .csubst0 i v c1 c2
                                  e:C
                                       .drop n0 O c1 e
                                         (or4
                                              drop n0 O c2 e
                                              ex3_4
                                                K
                                                C
                                                T
                                                T
                                                λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                                λk:K.λe0:C.λ:T.λw:T.drop n0 O c2 (CHead e0 k w)
                                                λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k n0)) v u w
                                              ex3_4
                                                K
                                                C
                                                C
                                                T
                                                λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                                λk:K.λ:C.λe2:C.λu:T.drop n0 O c2 (CHead e2 k u)
                                                λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k n0)) v e1 e2
                                              ex4_5
                                                K
                                                C
                                                C
                                                T
                                                T
                                                λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                                λk:K.λ:C.λe2:C.λ:T.λw:T.drop n0 O c2 (CHead e2 k w)
                                                λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k n0)) v u w
                                                λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k n0)) v e1 e2)
                    assume inat
                    suppose Hlt (S n0) i
                    assume c1C
                      we proceed by induction on c1 to prove 
                         c2:C
                           .v:T
                             .csubst0 i v c1 c2
                               e:C
                                    .drop (S n0) O c1 e
                                      (or4
                                           drop (S n0) O c2 e
                                           ex3_4
                                             K
                                             C
                                             T
                                             T
                                             λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                             λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                             λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                           ex3_4
                                             K
                                             C
                                             C
                                             T
                                             λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                             λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                             λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                           ex4_5
                                             K
                                             C
                                             C
                                             T
                                             T
                                             λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                             λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                             λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                             λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2)
                         case CSort : n1:nat 
                            the thesis becomes 
                            c2:C
                              .v:T
                                .csubst0 i v (CSort n1) c2
                                  e:C
                                       .H1:drop (S n0) O (CSort n1) e
                                         .or4
                                           drop (S n0) O c2 e
                                           ex3_4
                                             K
                                             C
                                             T
                                             T
                                             λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                             λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                             λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                           ex3_4
                                             K
                                             C
                                             C
                                             T
                                             λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                             λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                             λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                           ex4_5
                                             K
                                             C
                                             C
                                             T
                                             T
                                             λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                             λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                             λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                             λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                assume c2C
                                assume vT
                                suppose csubst0 i v (CSort n1) c2
                                assume eC
                                suppose H1drop (S n0) O (CSort n1) e
                                  by (drop_gen_sort . . . . H1)
                                  we proved and3 (eq C e (CSort n1)) (eq nat (S n0) O) (eq nat O O)
                                  we proceed by induction on the previous result to prove 
                                     or4
                                       drop (S n0) O c2 e
                                       ex3_4
                                         K
                                         C
                                         T
                                         T
                                         λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                         λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                         λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                       ex3_4
                                         K
                                         C
                                         C
                                         T
                                         λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                         λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                         λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                       ex4_5
                                         K
                                         C
                                         C
                                         T
                                         T
                                         λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                         λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                         λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                         λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                     case and3_intro : H2:eq C e (CSort n1) H3:eq nat (S n0) O :eq nat O O 
                                        the thesis becomes 
                                        or4
                                          drop (S n0) O c2 e
                                          ex3_4
                                            K
                                            C
                                            T
                                            T
                                            λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                            λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                            λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                          ex3_4
                                            K
                                            C
                                            C
                                            T
                                            λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                            λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                            λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                          ex4_5
                                            K
                                            C
                                            C
                                            T
                                            T
                                            λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                            λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                            λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                            λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                           (H5
                                              we proceed by induction on H3 to prove <λ:nat.Prop> CASE O OF OFalse | S True
                                                 case refl_equal : 
                                                    the thesis becomes <λ:nat.Prop> CASE S n0 OF OFalse | S True
                                                       consider I
                                                       we proved True
<λ:nat.Prop> CASE S n0 OF OFalse | S True
<λ:nat.Prop> CASE O OF OFalse | S True
                                           end of H5
                                           consider H5
                                           we proved <λ:nat.Prop> CASE O OF OFalse | S True
                                           that is equivalent to False
                                           we proceed by induction on the previous result to prove 
                                              or4
                                                drop (S n0) O c2 (CSort n1)
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk:K.λe0:C.λu:T.λ:T.eq C (CSort n1) (CHead e0 k u)
                                                  λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                                  λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk:K.λe1:C.λ:C.λu:T.eq C (CSort n1) (CHead e1 k u)
                                                  λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                                  λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk:K.λe1:C.λ:C.λu:T.λ:T.eq C (CSort n1) (CHead e1 k u)
                                                  λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                                  λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                  λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                           we proved 
                                              or4
                                                drop (S n0) O c2 (CSort n1)
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk:K.λe0:C.λu:T.λ:T.eq C (CSort n1) (CHead e0 k u)
                                                  λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                                  λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk:K.λe1:C.λ:C.λu:T.eq C (CSort n1) (CHead e1 k u)
                                                  λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                                  λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk:K.λe1:C.λ:C.λu:T.λ:T.eq C (CSort n1) (CHead e1 k u)
                                                  λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                                  λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                  λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                           by (eq_ind_r . . . previous . H2)

                                              or4
                                                drop (S n0) O c2 e
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                                  λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                                  λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                                  λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                                  λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                                  λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                                  λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                  λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                  we proved 
                                     or4
                                       drop (S n0) O c2 e
                                       ex3_4
                                         K
                                         C
                                         T
                                         T
                                         λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                         λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                         λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                       ex3_4
                                         K
                                         C
                                         C
                                         T
                                         λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                         λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                         λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                       ex4_5
                                         K
                                         C
                                         C
                                         T
                                         T
                                         λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                         λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                         λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                         λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2

                                  c2:C
                                    .v:T
                                      .csubst0 i v (CSort n1) c2
                                        e:C
                                             .H1:drop (S n0) O (CSort n1) e
                                               .or4
                                                 drop (S n0) O c2 e
                                                 ex3_4
                                                   K
                                                   C
                                                   T
                                                   T
                                                   λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                                   λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                                   λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                 ex3_4
                                                   K
                                                   C
                                                   C
                                                   T
                                                   λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                                   λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                                   λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                                 ex4_5
                                                   K
                                                   C
                                                   C
                                                   T
                                                   T
                                                   λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                                   λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                                   λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                   λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                         case CHead : c:C k:K t:T 
                            the thesis becomes 
                            c2:C
                              .v:T
                                .H1:csubst0 i v (CHead c k t) c2
                                  .e:C
                                    .H2:drop (S n0) O (CHead c k t) e
                                      .or4
                                        drop (S n0) O c2 e
                                        ex3_4
                                          K
                                          C
                                          T
                                          T
                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                        ex3_4
                                          K
                                          C
                                          C
                                          T
                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                        ex4_5
                                          K
                                          C
                                          C
                                          T
                                          T
                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                            (H0) by induction hypothesis we know 
                               c2:C
                                 .v:T
                                   .csubst0 i v c c2
                                     e:C
                                          .drop (S n0) O c e
                                            (or4
                                                 drop (S n0) O c2 e
                                                 ex3_4
                                                   K
                                                   C
                                                   T
                                                   T
                                                   λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                                   λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                                   λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                 ex3_4
                                                   K
                                                   C
                                                   C
                                                   T
                                                   λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                                   λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                                   λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                                 ex4_5
                                                   K
                                                   C
                                                   C
                                                   T
                                                   T
                                                   λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                                   λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                                   λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                   λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2)
                                assume c2C
                                assume vT
                                suppose H1csubst0 i v (CHead c k t) c2
                                assume eC
                                suppose H2drop (S n0) O (CHead c k t) e
                                  by (csubst0_gen_head . . . . . . H1)
                                  we proved 
                                     or3
                                       ex3_2
                                         T
                                         nat
                                         λ:T.λj:nat.eq nat i (s k j)
                                         λu2:T.λ:nat.eq C c2 (CHead c k u2)
                                         λu2:T.λj:nat.subst0 j v t u2
                                       ex3_2
                                         C
                                         nat
                                         λ:C.λj:nat.eq nat i (s k j)
                                         λc2:C.λ:nat.eq C c2 (CHead c2 k t)
                                         λc2:C.λj:nat.csubst0 j v c c2
                                       ex4_3
                                         T
                                         C
                                         nat
                                         λ:T.λ:C.λj:nat.eq nat i (s k j)
                                         λu2:T.λc2:C.λ:nat.eq C c2 (CHead c2 k u2)
                                         λu2:T.λ:C.λj:nat.subst0 j v t u2
                                         λ:T.λc2:C.λj:nat.csubst0 j v c c2
                                  we proceed by induction on the previous result to prove 
                                     or4
                                       drop (S n0) O c2 e
                                       ex3_4
                                         K
                                         C
                                         T
                                         T
                                         λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                         λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                         λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                       ex3_4
                                         K
                                         C
                                         C
                                         T
                                         λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                         λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                         λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                       ex4_5
                                         K
                                         C
                                         C
                                         T
                                         T
                                         λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                         λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                         λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                         λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                     case or3_intro0 : H3:ex3_2 T nat λ:T.λj:nat.eq nat i (s k j) λu2:T.λ:nat.eq C c2 (CHead c k u2) λu2:T.λj:nat.subst0 j v t u2 
                                        the thesis becomes 
                                        or4
                                          drop (S n0) O c2 e
                                          ex3_4
                                            K
                                            C
                                            T
                                            T
                                            λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                            λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                            λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                          ex3_4
                                            K
                                            C
                                            C
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                            λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                          ex4_5
                                            K
                                            C
                                            C
                                            T
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                            λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                            λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                           we proceed by induction on H3 to prove 
                                              or4
                                                drop (S n0) O c2 e
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                  λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                              case ex3_2_intro : x0:T x1:nat H4:eq nat i (s k x1) H5:eq C c2 (CHead c k x0) :subst0 x1 v t x0 
                                                 the thesis becomes 
                                                 or4
                                                   drop (S n0) O c2 e
                                                   ex3_4
                                                     K
                                                     C
                                                     T
                                                     T
                                                     λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                     λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                     λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                   ex3_4
                                                     K
                                                     C
                                                     C
                                                     T
                                                     λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                     λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                     λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                   ex4_5
                                                     K
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                     λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                     λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                     λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                    (H7
                                                       we proceed by induction on H4 to prove 
                                                          c3:C
                                                            .v0:T
                                                              .csubst0 (s k x1) v0 c c3
                                                                e0:C
                                                                     .drop (S n0) O c e0
                                                                       (or4
                                                                            drop (S n0) O c3 e0
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                              λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k0 (S n0))) v0 u w
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                              λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x1) (s k0 (S n0))) v0 e1 e2
                                                                            ex4_5
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                              λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k0 (S n0))) v0 u w
                                                                              λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x1) (s k0 (S n0))) v0 e1 e2)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H0

                                                          c3:C
                                                            .v0:T
                                                              .csubst0 (s k x1) v0 c c3
                                                                e0:C
                                                                     .drop (S n0) O c e0
                                                                       (or4
                                                                            drop (S n0) O c3 e0
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                              λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k0 (S n0))) v0 u w
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                              λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x1) (s k0 (S n0))) v0 e1 e2
                                                                            ex4_5
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                              λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k0 (S n0))) v0 u w
                                                                              λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x1) (s k0 (S n0))) v0 e1 e2)
                                                    end of H7
                                                    (H8
                                                       we proceed by induction on H4 to prove lt (S n0) (s k x1)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H
lt (S n0) (s k x1)
                                                    end of H8
                                                    by (drop_gen_drop . . . . . H2)
                                                    we proved drop (r k n0) O c e
                                                       assume bB
                                                        suppose H9drop (r (Bind b) n0) O c e
                                                        suppose 
                                                           c3:C
                                                             .v0:T
                                                               .csubst0 (s (Bind b) x1) v0 c c3
                                                                 e0:C
                                                                      .drop (S n0) O c e0
                                                                        (or4
                                                                             drop (S n0) O c3 e0
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                               λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 e1 e2
                                                                             ex4_5
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                               λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w
                                                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 e1 e2)
                                                        suppose lt (S n0) (s (Bind b) x1)
                                                          by (drop_drop . . . . H9 .)
                                                          we proved drop (S n0) O (CHead c (Bind b) x0) e
                                                          by (or4_intro0 . . . . previous)
                                                          we proved 
                                                             or4
                                                               drop (S n0) O (CHead c (Bind b) x0) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead c (Bind b) x0) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead c (Bind b) x0) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead c (Bind b) x0) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2

                                                          H9:drop (r (Bind b) n0) O c e
                                                            .c3:C
                                                                .v0:T
                                                                  .csubst0 (s (Bind b) x1) v0 c c3
                                                                    e0:C
                                                                         .drop (S n0) O c e0
                                                                           (or4
                                                                                drop (S n0) O c3 e0
                                                                                ex3_4
                                                                                  K
                                                                                  C
                                                                                  T
                                                                                  T
                                                                                  λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w
                                                                                ex3_4
                                                                                  K
                                                                                  C
                                                                                  C
                                                                                  T
                                                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 e1 e2
                                                                                ex4_5
                                                                                  K
                                                                                  C
                                                                                  C
                                                                                  T
                                                                                  T
                                                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w
                                                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 e1 e2)
                                                              (lt (S n0) (s (Bind b) x1)
                                                                   (or4
                                                                        drop (S n0) O (CHead c (Bind b) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead c (Bind b) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead c (Bind b) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead c (Bind b) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2))
                                                       assume fF
                                                        suppose H9drop (r (Flat f) n0) O c e
                                                        suppose 
                                                           c3:C
                                                             .v0:T
                                                               .csubst0 (s (Flat f) x1) v0 c c3
                                                                 e0:C
                                                                      .drop (S n0) O c e0
                                                                        (or4
                                                                             drop (S n0) O c3 e0
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                               λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2
                                                                             ex4_5
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                               λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w
                                                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2)
                                                        suppose lt (S n0) (s (Flat f) x1)
                                                          by (drop_drop . . . . H9 .)
                                                          we proved drop (S n0) O (CHead c (Flat f) x0) e
                                                          by (or4_intro0 . . . . previous)
                                                          we proved 
                                                             or4
                                                               drop (S n0) O (CHead c (Flat f) x0) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead c (Flat f) x0) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead c (Flat f) x0) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead c (Flat f) x0) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2

                                                          H9:drop (r (Flat f) n0) O c e
                                                            .c3:C
                                                                .v0:T
                                                                  .csubst0 (s (Flat f) x1) v0 c c3
                                                                    e0:C
                                                                         .drop (S n0) O c e0
                                                                           (or4
                                                                                drop (S n0) O c3 e0
                                                                                ex3_4
                                                                                  K
                                                                                  C
                                                                                  T
                                                                                  T
                                                                                  λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w
                                                                                ex3_4
                                                                                  K
                                                                                  C
                                                                                  C
                                                                                  T
                                                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2
                                                                                ex4_5
                                                                                  K
                                                                                  C
                                                                                  C
                                                                                  T
                                                                                  T
                                                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w
                                                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2)
                                                              (lt (S n0) (s (Flat f) x1)
                                                                   (or4
                                                                        drop (S n0) O (CHead c (Flat f) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead c (Flat f) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead c (Flat f) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead c (Flat f) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2))
                                                    by (previous . previous H7 H8)
                                                    we proved 
                                                       or4
                                                         drop (S n0) O (CHead c k x0) e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk1:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k1 u)
                                                           λk1:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead c k x0) (CHead e0 k1 w)
                                                           λk1:K.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k1 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk1:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k1 u)
                                                           λk1:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead c k x0) (CHead e2 k1 u)
                                                           λk1:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x1) (s k1 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk1:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k1 u)
                                                           λk1:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead c k x0) (CHead e2 k1 w)
                                                           λk1:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k1 (S n0))) v u w
                                                           λk1:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x1) (s k1 (S n0))) v e1 e2
                                                    by (eq_ind_r . . . previous . H4)
                                                    we proved 
                                                       or4
                                                         drop (S n0) O (CHead c k x0) e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                           λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead c k x0) (CHead e0 k0 w)
                                                           λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead c k x0) (CHead e2 k0 u)
                                                           λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead c k x0) (CHead e2 k0 w)
                                                           λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                           λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                    by (eq_ind_r . . . previous . H5)

                                                       or4
                                                         drop (S n0) O c2 e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                           λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                           λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                           λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                           λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                           λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2

                                              or4
                                                drop (S n0) O c2 e
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                  λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                     case or3_intro1 : H3:ex3_2 C nat λ:C.λj:nat.eq nat i (s k j) λc3:C.λ:nat.eq C c2 (CHead c3 k t) λc3:C.λj:nat.csubst0 j v c c3 
                                        the thesis becomes 
                                        or4
                                          drop (S n0) O c2 e
                                          ex3_4
                                            K
                                            C
                                            T
                                            T
                                            λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                            λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                            λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                          ex3_4
                                            K
                                            C
                                            C
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                            λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                          ex4_5
                                            K
                                            C
                                            C
                                            T
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                            λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                            λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                           we proceed by induction on H3 to prove 
                                              or4
                                                drop (S n0) O c2 e
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                  λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                              case ex3_2_intro : x0:C x1:nat H4:eq nat i (s k x1) H5:eq C c2 (CHead x0 k t) H6:csubst0 x1 v c x0 
                                                 the thesis becomes 
                                                 or4
                                                   drop (S n0) O c2 e
                                                   ex3_4
                                                     K
                                                     C
                                                     T
                                                     T
                                                     λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                     λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                     λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                   ex3_4
                                                     K
                                                     C
                                                     C
                                                     T
                                                     λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                     λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                     λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                   ex4_5
                                                     K
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                     λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                     λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                     λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                    (H7
                                                       we proceed by induction on H4 to prove 
                                                          c3:C
                                                            .v0:T
                                                              .csubst0 (s k x1) v0 c c3
                                                                e0:C
                                                                     .drop (S n0) O c e0
                                                                       (or4
                                                                            drop (S n0) O c3 e0
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                              λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k0 (S n0))) v0 u w
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                              λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x1) (s k0 (S n0))) v0 e1 e2
                                                                            ex4_5
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                              λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k0 (S n0))) v0 u w
                                                                              λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x1) (s k0 (S n0))) v0 e1 e2)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H0

                                                          c3:C
                                                            .v0:T
                                                              .csubst0 (s k x1) v0 c c3
                                                                e0:C
                                                                     .drop (S n0) O c e0
                                                                       (or4
                                                                            drop (S n0) O c3 e0
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                              λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k0 (S n0))) v0 u w
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                              λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x1) (s k0 (S n0))) v0 e1 e2
                                                                            ex4_5
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                              λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k0 (S n0))) v0 u w
                                                                              λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x1) (s k0 (S n0))) v0 e1 e2)
                                                    end of H7
                                                    (H8
                                                       we proceed by induction on H4 to prove lt (S n0) (s k x1)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H
lt (S n0) (s k x1)
                                                    end of H8
                                                    by (drop_gen_drop . . . . . H2)
                                                    we proved drop (r k n0) O c e
                                                       assume bB
                                                        suppose H9drop (r (Bind b) n0) O c e
                                                        suppose 
                                                           c3:C
                                                             .v0:T
                                                               .csubst0 (s (Bind b) x1) v0 c c3
                                                                 e0:C
                                                                      .drop (S n0) O c e0
                                                                        (or4
                                                                             drop (S n0) O c3 e0
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                               λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 e1 e2
                                                                             ex4_5
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                               λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w
                                                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 e1 e2)
                                                        suppose H11lt (S n0) (s (Bind b) x1)
                                                          (H12
                                                             (h1
                                                                consider H11
                                                                we proved lt (S n0) (s (Bind b) x1)
                                                                that is equivalent to le (S (S n0)) (S x1)
                                                                by (le_S_n . . previous)
                                                                we proved le (S n0) x1
lt n0 x1
                                                             end of h1
                                                             (h2
                                                                consider H9
                                                                we proved drop (r (Bind b) n0) O c e
drop n0 O c e
                                                             end of h2
                                                             by (IHn . h1 . . . H6 . h2)

                                                                or4
                                                                  drop n0 O x0 e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                                                    λk:K.λe0:C.λ:T.λw:T.drop n0 O x0 (CHead e0 k w)
                                                                    λk:K.λ:C.λu:T.λw:T.subst0 (minus x1 (s k n0)) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                                                    λk:K.λ:C.λe2:C.λu:T.drop n0 O x0 (CHead e2 k u)
                                                                    λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus x1 (s k n0)) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                                                    λk:K.λ:C.λe2:C.λ:T.λw:T.drop n0 O x0 (CHead e2 k w)
                                                                    λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus x1 (s k n0)) v u w
                                                                    λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus x1 (s k n0)) v e1 e2
                                                          end of H12
                                                          we proceed by induction on H12 to prove 
                                                             or4
                                                               drop (S n0) O (CHead x0 (Bind b) t) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                             case or4_intro0 : H13:drop n0 O x0 e 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x0 (Bind b) t) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                   consider H13
                                                                   we proved drop n0 O x0 e
                                                                   that is equivalent to drop (r (Bind b) n0) O x0 e
                                                                   by (drop_drop . . . . previous .)
                                                                   we proved drop (S n0) O (CHead x0 (Bind b) t) e
                                                                   by (or4_intro0 . . . . previous)

                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Bind b) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                             case or4_intro1 : H13:ex3_4 K C T T λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u) λk0:K.λe0:C.λ:T.λw:T.drop n0 O x0 (CHead e0 k0 w) λk0:K.λ:C.λu:T.λw:T.subst0 (minus x1 (s k0 n0)) v u w 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x0 (Bind b) t) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H13 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Bind b) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                      case ex3_4_intro : x2:K x3:C x4:T x5:T H14:eq C e (CHead x3 x2 x4) H15:drop n0 O x0 (CHead x3 x2 x5) H16:subst0 (minus x1 (s x2 n0)) v x4 x5 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x0 (Bind b) t) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x3 x2 x4) (CHead x3 x2 x4)
                                                                            end of h1
                                                                            (h2
                                                                               consider H15
                                                                               we proved drop n0 O x0 (CHead x3 x2 x5)
                                                                               that is equivalent to drop (r (Bind b) n0) O x0 (CHead x3 x2 x5)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x0 (Bind b) t) (CHead x3 x2 x5)
                                                                            end of h2
                                                                            (h3
                                                                               (h1
                                                                                  consider H16
                                                                                  we proved subst0 (minus x1 (s x2 n0)) v x4 x5
subst0 (minus (s (Bind b) x1) (S (s x2 n0))) v x4 x5
                                                                               end of h1
                                                                               (h2
                                                                                  by (s_S . .)
eq nat (s x2 (S n0)) (S (s x2 n0))
                                                                               end of h2
                                                                               by (eq_ind_r . . . h1 . h2)
subst0 (minus (s (Bind b) x1) (s x2 (S n0))) v x4 x5
                                                                            end of h3
                                                                            by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                                                            we proved 
                                                                               ex3_4
                                                                                 K
                                                                                 C
                                                                                 T
                                                                                 T
                                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x3 x2 x4) (CHead e0 k0 u)
                                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                            by (or4_intro1 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Bind b) t) (CHead x3 x2 x4)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x3 x2 x4) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x3 x2 x4) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x3 x2 x4) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H14)

                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Bind b) t) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Bind b) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                             case or4_intro2 : H13:ex3_4 K C C T λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u) λk0:K.λ:C.λe2:C.λu:T.drop n0 O x0 (CHead e2 k0 u) λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus x1 (s k0 n0)) v e1 e2 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x0 (Bind b) t) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H13 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Bind b) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                      case ex3_4_intro : x2:K x3:C x4:C x5:T H14:eq C e (CHead x3 x2 x5) H15:drop n0 O x0 (CHead x4 x2 x5) H16:csubst0 (minus x1 (s x2 n0)) v x3 x4 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x0 (Bind b) t) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x3 x2 x5) (CHead x3 x2 x5)
                                                                            end of h1
                                                                            (h2
                                                                               consider H15
                                                                               we proved drop n0 O x0 (CHead x4 x2 x5)
                                                                               that is equivalent to drop (r (Bind b) n0) O x0 (CHead x4 x2 x5)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x0 (Bind b) t) (CHead x4 x2 x5)
                                                                            end of h2
                                                                            (h3
                                                                               (h1
                                                                                  consider H16
                                                                                  we proved csubst0 (minus x1 (s x2 n0)) v x3 x4
csubst0 (minus (s (Bind b) x1) (S (s x2 n0))) v x3 x4
                                                                               end of h1
                                                                               (h2
                                                                                  by (s_S . .)
eq nat (s x2 (S n0)) (S (s x2 n0))
                                                                               end of h2
                                                                               by (eq_ind_r . . . h1 . h2)
csubst0 (minus (s (Bind b) x1) (s x2 (S n0))) v x3 x4
                                                                            end of h3
                                                                            by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                                                            we proved 
                                                                               ex3_4
                                                                                 K
                                                                                 C
                                                                                 C
                                                                                 T
                                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                            by (or4_intro2 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Bind b) t) (CHead x3 x2 x5)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H14)

                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Bind b) t) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Bind b) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                             case or4_intro3 : H13:ex4_5 K C C T T λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u) λk0:K.λ:C.λe2:C.λ:T.λw:T.drop n0 O x0 (CHead e2 k0 w) λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus x1 (s k0 n0)) v u w λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus x1 (s k0 n0)) v e1 e2 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x0 (Bind b) t) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H13 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Bind b) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                      case ex4_5_intro : x2:K x3:C x4:C x5:T x6:T H14:eq C e (CHead x3 x2 x5) H15:drop n0 O x0 (CHead x4 x2 x6) H16:subst0 (minus x1 (s x2 n0)) v x5 x6 H17:csubst0 (minus x1 (s x2 n0)) v x3 x4 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x0 (Bind b) t) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x3 x2 x5) (CHead x3 x2 x5)
                                                                            end of h1
                                                                            (h2
                                                                               consider H15
                                                                               we proved drop n0 O x0 (CHead x4 x2 x6)
                                                                               that is equivalent to drop (r (Bind b) n0) O x0 (CHead x4 x2 x6)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x0 (Bind b) t) (CHead x4 x2 x6)
                                                                            end of h2
                                                                            (h3
                                                                               (h1
                                                                                  consider H16
                                                                                  we proved subst0 (minus x1 (s x2 n0)) v x5 x6
subst0 (minus (s (Bind b) x1) (S (s x2 n0))) v x5 x6
                                                                               end of h1
                                                                               (h2
                                                                                  by (s_S . .)
eq nat (s x2 (S n0)) (S (s x2 n0))
                                                                               end of h2
                                                                               by (eq_ind_r . . . h1 . h2)
subst0 (minus (s (Bind b) x1) (s x2 (S n0))) v x5 x6
                                                                            end of h3
                                                                            (h4
                                                                               (h1
                                                                                  consider H17
                                                                                  we proved csubst0 (minus x1 (s x2 n0)) v x3 x4
csubst0 (minus (s (Bind b) x1) (S (s x2 n0))) v x3 x4
                                                                               end of h1
                                                                               (h2
                                                                                  by (s_S . .)
eq nat (s x2 (S n0)) (S (s x2 n0))
                                                                               end of h2
                                                                               by (eq_ind_r . . . h1 . h2)
csubst0 (minus (s (Bind b) x1) (s x2 (S n0))) v x3 x4
                                                                            end of h4
                                                                            by (ex4_5_intro . . . . . . . . . . . . . . h1 h2 h3 h4)
                                                                            we proved 
                                                                               ex4_5
                                                                                 K
                                                                                 C
                                                                                 C
                                                                                 T
                                                                                 T
                                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                            by (or4_intro3 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Bind b) t) (CHead x3 x2 x5)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H14)

                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Bind b) t) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Bind b) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                          we proved 
                                                             or4
                                                               drop (S n0) O (CHead x0 (Bind b) t) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2

                                                          H9:drop (r (Bind b) n0) O c e
                                                            .c3:C
                                                                .v0:T
                                                                  .csubst0 (s (Bind b) x1) v0 c c3
                                                                    e0:C
                                                                         .drop (S n0) O c e0
                                                                           (or4
                                                                                drop (S n0) O c3 e0
                                                                                ex3_4
                                                                                  K
                                                                                  C
                                                                                  T
                                                                                  T
                                                                                  λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w
                                                                                ex3_4
                                                                                  K
                                                                                  C
                                                                                  C
                                                                                  T
                                                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 e1 e2
                                                                                ex4_5
                                                                                  K
                                                                                  C
                                                                                  C
                                                                                  T
                                                                                  T
                                                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w
                                                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 e1 e2)
                                                              H11:lt (S n0) (s (Bind b) x1)
                                                                   .or4
                                                                     drop (S n0) O (CHead x0 (Bind b) t) e
                                                                     ex3_4
                                                                       K
                                                                       C
                                                                       T
                                                                       T
                                                                       λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                       λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)
                                                                       λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                     ex3_4
                                                                       K
                                                                       C
                                                                       C
                                                                       T
                                                                       λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                       λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)
                                                                       λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                                     ex4_5
                                                                       K
                                                                       C
                                                                       C
                                                                       T
                                                                       T
                                                                       λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                       λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w)
                                                                       λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w
                                                                       λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2
                                                       assume fF
                                                        suppose H9drop (r (Flat f) n0) O c e
                                                        suppose H10
                                                           c3:C
                                                             .v0:T
                                                               .csubst0 (s (Flat f) x1) v0 c c3
                                                                 e0:C
                                                                      .drop (S n0) O c e0
                                                                        (or4
                                                                             drop (S n0) O c3 e0
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                               λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2
                                                                             ex4_5
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                               λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w
                                                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2)
                                                        suppose lt (S n0) (s (Flat f) x1)
                                                          (H12
                                                             (h1
                                                                consider H6
                                                                we proved csubst0 x1 v c x0
csubst0 (s (Flat f) x1) v c x0
                                                             end of h1
                                                             (h2
                                                                consider H9
                                                                we proved drop (r (Flat f) n0) O c e
drop (S n0) O c e
                                                             end of h2
                                                             by (H10 . . h1 . h2)

                                                                or4
                                                                  drop (S n0) O x0 e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O x0 (CHead e1 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O x0 (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O x0 (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                          end of H12
                                                          consider H12
                                                          we proved 
                                                             or4
                                                               drop (S n0) O x0 e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O x0 (CHead e1 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O x0 (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O x0 (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                          that is equivalent to 
                                                             or4
                                                               drop (S n0) O x0 e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O x0 (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus x1 (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O x0 (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus x1 (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O x0 (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus x1 (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus x1 (s k0 (S n0))) v e1 e2
                                                          we proceed by induction on the previous result to prove 
                                                             or4
                                                               drop (S n0) O (CHead x0 (Flat f) t) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                             case or4_intro0 : H13:drop (S n0) O x0 e 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x0 (Flat f) t) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                   consider H13
                                                                   we proved drop (S n0) O x0 e
                                                                   that is equivalent to drop (r (Flat f) n0) O x0 e
                                                                   by (drop_drop . . . . previous .)
                                                                   we proved drop (S n0) O (CHead x0 (Flat f) t) e
                                                                   by (or4_intro0 . . . . previous)

                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Flat f) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                             case or4_intro1 : H13:ex3_4 K C T T λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u) λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O x0 (CHead e0 k0 w) λk0:K.λ:C.λu:T.λw:T.subst0 (minus x1 (s k0 (S n0))) v u w 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x0 (Flat f) t) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H13 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Flat f) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                      case ex3_4_intro : x2:K x3:C x4:T x5:T H14:eq C e (CHead x3 x2 x4) H15:drop (S n0) O x0 (CHead x3 x2 x5) H16:subst0 (minus x1 (s x2 (S n0))) v x4 x5 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x0 (Flat f) t) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x3 x2 x4) (CHead x3 x2 x4)
                                                                            end of h1
                                                                            (h2
                                                                               consider H15
                                                                               we proved drop (S n0) O x0 (CHead x3 x2 x5)
                                                                               that is equivalent to drop (r (Flat f) n0) O x0 (CHead x3 x2 x5)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x0 (Flat f) t) (CHead x3 x2 x5)
                                                                            end of h2
                                                                            (h3
                                                                               consider H16
                                                                               we proved subst0 (minus x1 (s x2 (S n0))) v x4 x5
subst0 (minus (s (Flat f) x1) (s x2 (S n0))) v x4 x5
                                                                            end of h3
                                                                            by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                                                            we proved 
                                                                               ex3_4
                                                                                 K
                                                                                 C
                                                                                 T
                                                                                 T
                                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x3 x2 x4) (CHead e0 k0 u)
                                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                            by (or4_intro1 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Flat f) t) (CHead x3 x2 x4)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x3 x2 x4) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x3 x2 x4) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x3 x2 x4) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H14)

                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Flat f) t) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Flat f) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                             case or4_intro2 : H13:ex3_4 K C C T λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u) λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O x0 (CHead e2 k0 u) λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus x1 (s k0 (S n0))) v e1 e2 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x0 (Flat f) t) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H13 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Flat f) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                      case ex3_4_intro : x2:K x3:C x4:C x5:T H14:eq C e (CHead x3 x2 x5) H15:drop (S n0) O x0 (CHead x4 x2 x5) H16:csubst0 (minus x1 (s x2 (S n0))) v x3 x4 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x0 (Flat f) t) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x3 x2 x5) (CHead x3 x2 x5)
                                                                            end of h1
                                                                            (h2
                                                                               consider H15
                                                                               we proved drop (S n0) O x0 (CHead x4 x2 x5)
                                                                               that is equivalent to drop (r (Flat f) n0) O x0 (CHead x4 x2 x5)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x0 (Flat f) t) (CHead x4 x2 x5)
                                                                            end of h2
                                                                            (h3
                                                                               consider H16
                                                                               we proved csubst0 (minus x1 (s x2 (S n0))) v x3 x4
csubst0 (minus (s (Flat f) x1) (s x2 (S n0))) v x3 x4
                                                                            end of h3
                                                                            by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                                                            we proved 
                                                                               ex3_4
                                                                                 K
                                                                                 C
                                                                                 C
                                                                                 T
                                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                            by (or4_intro2 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Flat f) t) (CHead x3 x2 x5)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H14)

                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Flat f) t) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Flat f) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                             case or4_intro3 : H13:ex4_5 K C C T T λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u) λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O x0 (CHead e2 k0 w) λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus x1 (s k0 (S n0))) v u w λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus x1 (s k0 (S n0))) v e1 e2 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x0 (Flat f) t) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H13 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Flat f) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                      case ex4_5_intro : x2:K x3:C x4:C x5:T x6:T H14:eq C e (CHead x3 x2 x5) H15:drop (S n0) O x0 (CHead x4 x2 x6) H16:subst0 (minus x1 (s x2 (S n0))) v x5 x6 H17:csubst0 (minus x1 (s x2 (S n0))) v x3 x4 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x0 (Flat f) t) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x3 x2 x5) (CHead x3 x2 x5)
                                                                            end of h1
                                                                            (h2
                                                                               consider H15
                                                                               we proved drop (S n0) O x0 (CHead x4 x2 x6)
                                                                               that is equivalent to drop (r (Flat f) n0) O x0 (CHead x4 x2 x6)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x0 (Flat f) t) (CHead x4 x2 x6)
                                                                            end of h2
                                                                            (h3
                                                                               consider H16
                                                                               we proved subst0 (minus x1 (s x2 (S n0))) v x5 x6
subst0 (minus (s (Flat f) x1) (s x2 (S n0))) v x5 x6
                                                                            end of h3
                                                                            (h4
                                                                               consider H17
                                                                               we proved csubst0 (minus x1 (s x2 (S n0))) v x3 x4
csubst0 (minus (s (Flat f) x1) (s x2 (S n0))) v x3 x4
                                                                            end of h4
                                                                            by (ex4_5_intro . . . . . . . . . . . . . . h1 h2 h3 h4)
                                                                            we proved 
                                                                               ex4_5
                                                                                 K
                                                                                 C
                                                                                 C
                                                                                 T
                                                                                 T
                                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                            by (or4_intro3 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Flat f) t) (CHead x3 x2 x5)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x3 x2 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H14)

                                                                               or4
                                                                                 drop (S n0) O (CHead x0 (Flat f) t) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x0 (Flat f) t) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                          we proved 
                                                             or4
                                                               drop (S n0) O (CHead x0 (Flat f) t) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2

                                                          H9:drop (r (Flat f) n0) O c e
                                                            .H10:c3:C
                                                                         .v0:T
                                                                           .csubst0 (s (Flat f) x1) v0 c c3
                                                                             e0:C
                                                                                  .drop (S n0) O c e0
                                                                                    (or4
                                                                                         drop (S n0) O c3 e0
                                                                                         ex3_4
                                                                                           K
                                                                                           C
                                                                                           T
                                                                                           T
                                                                                           λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                           λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                                           λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w
                                                                                         ex3_4
                                                                                           K
                                                                                           C
                                                                                           C
                                                                                           T
                                                                                           λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                                           λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                                           λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2
                                                                                         ex4_5
                                                                                           K
                                                                                           C
                                                                                           C
                                                                                           T
                                                                                           T
                                                                                           λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                           λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                                           λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w
                                                                                           λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2)
                                                              .lt (S n0) (s (Flat f) x1)
                                                                (or4
                                                                     drop (S n0) O (CHead x0 (Flat f) t) e
                                                                     ex3_4
                                                                       K
                                                                       C
                                                                       T
                                                                       T
                                                                       λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                       λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)
                                                                       λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                     ex3_4
                                                                       K
                                                                       C
                                                                       C
                                                                       T
                                                                       λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                       λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)
                                                                       λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2
                                                                     ex4_5
                                                                       K
                                                                       C
                                                                       C
                                                                       T
                                                                       T
                                                                       λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                       λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w)
                                                                       λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w
                                                                       λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2)
                                                    by (previous . previous H7 H8)
                                                    we proved 
                                                       or4
                                                         drop (S n0) O (CHead x0 k t) e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk1:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k1 u)
                                                           λk1:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 k t) (CHead e0 k1 w)
                                                           λk1:K.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k1 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk1:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k1 u)
                                                           λk1:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 k t) (CHead e2 k1 u)
                                                           λk1:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x1) (s k1 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk1:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k1 u)
                                                           λk1:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 k t) (CHead e2 k1 w)
                                                           λk1:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x1) (s k1 (S n0))) v u w
                                                           λk1:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x1) (s k1 (S n0))) v e1 e2
                                                    by (eq_ind_r . . . previous . H4)
                                                    we proved 
                                                       or4
                                                         drop (S n0) O (CHead x0 k t) e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                           λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x0 k t) (CHead e0 k0 w)
                                                           λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x0 k t) (CHead e2 k0 u)
                                                           λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x0 k t) (CHead e2 k0 w)
                                                           λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                           λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                    by (eq_ind_r . . . previous . H5)

                                                       or4
                                                         drop (S n0) O c2 e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                           λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                           λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                           λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                           λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                           λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2

                                              or4
                                                drop (S n0) O c2 e
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                  λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                     case or3_intro2 : H3:ex4_3 T C nat λ:T.λ:C.λj:nat.eq nat i (s k j) λu2:T.λc3:C.λ:nat.eq C c2 (CHead c3 k u2) λu2:T.λ:C.λj:nat.subst0 j v t u2 λ:T.λc3:C.λj:nat.csubst0 j v c c3 
                                        the thesis becomes 
                                        or4
                                          drop (S n0) O c2 e
                                          ex3_4
                                            K
                                            C
                                            T
                                            T
                                            λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                            λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                            λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                          ex3_4
                                            K
                                            C
                                            C
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                            λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                          ex4_5
                                            K
                                            C
                                            C
                                            T
                                            T
                                            λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                            λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                            λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                            λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                           we proceed by induction on H3 to prove 
                                              or4
                                                drop (S n0) O c2 e
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                  λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                              case ex4_3_intro : x0:T x1:C x2:nat H4:eq nat i (s k x2) H5:eq C c2 (CHead x1 k x0) :subst0 x2 v t x0 H7:csubst0 x2 v c x1 
                                                 the thesis becomes 
                                                 or4
                                                   drop (S n0) O c2 e
                                                   ex3_4
                                                     K
                                                     C
                                                     T
                                                     T
                                                     λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                     λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                     λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                   ex3_4
                                                     K
                                                     C
                                                     C
                                                     T
                                                     λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                     λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                     λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                   ex4_5
                                                     K
                                                     C
                                                     C
                                                     T
                                                     T
                                                     λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                     λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                     λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                     λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                    (H8
                                                       we proceed by induction on H4 to prove 
                                                          c3:C
                                                            .v0:T
                                                              .csubst0 (s k x2) v0 c c3
                                                                e0:C
                                                                     .drop (S n0) O c e0
                                                                       (or4
                                                                            drop (S n0) O c3 e0
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                              λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k x2) (s k0 (S n0))) v0 u w
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                              λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x2) (s k0 (S n0))) v0 e1 e2
                                                                            ex4_5
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                              λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x2) (s k0 (S n0))) v0 u w
                                                                              λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x2) (s k0 (S n0))) v0 e1 e2)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H0

                                                          c3:C
                                                            .v0:T
                                                              .csubst0 (s k x2) v0 c c3
                                                                e0:C
                                                                     .drop (S n0) O c e0
                                                                       (or4
                                                                            drop (S n0) O c3 e0
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                              λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s k x2) (s k0 (S n0))) v0 u w
                                                                            ex3_4
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                              λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x2) (s k0 (S n0))) v0 e1 e2
                                                                            ex4_5
                                                                              K
                                                                              C
                                                                              C
                                                                              T
                                                                              T
                                                                              λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                              λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                              λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x2) (s k0 (S n0))) v0 u w
                                                                              λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x2) (s k0 (S n0))) v0 e1 e2)
                                                    end of H8
                                                    (H9
                                                       we proceed by induction on H4 to prove lt (S n0) (s k x2)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H
lt (S n0) (s k x2)
                                                    end of H9
                                                    by (drop_gen_drop . . . . . H2)
                                                    we proved drop (r k n0) O c e
                                                       assume bB
                                                        suppose H10drop (r (Bind b) n0) O c e
                                                        suppose 
                                                           c3:C
                                                             .v0:T
                                                               .csubst0 (s (Bind b) x2) v0 c c3
                                                                 e0:C
                                                                      .drop (S n0) O c e0
                                                                        (or4
                                                                             drop (S n0) O c3 e0
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                               λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 u w
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 e1 e2
                                                                             ex4_5
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                               λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 u w
                                                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 e1 e2)
                                                        suppose H12lt (S n0) (s (Bind b) x2)
                                                          (H13
                                                             (h1
                                                                consider H12
                                                                we proved lt (S n0) (s (Bind b) x2)
                                                                that is equivalent to le (S (S n0)) (S x2)
                                                                by (le_S_n . . previous)
                                                                we proved le (S n0) x2
lt n0 x2
                                                             end of h1
                                                             (h2
                                                                consider H10
                                                                we proved drop (r (Bind b) n0) O c e
drop n0 O c e
                                                             end of h2
                                                             by (IHn . h1 . . . H7 . h2)

                                                                or4
                                                                  drop n0 O x1 e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                                                    λk:K.λe0:C.λ:T.λw:T.drop n0 O x1 (CHead e0 k w)
                                                                    λk:K.λ:C.λu:T.λw:T.subst0 (minus x2 (s k n0)) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                                                    λk:K.λ:C.λe2:C.λu:T.drop n0 O x1 (CHead e2 k u)
                                                                    λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus x2 (s k n0)) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                                                    λk:K.λ:C.λe2:C.λ:T.λw:T.drop n0 O x1 (CHead e2 k w)
                                                                    λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus x2 (s k n0)) v u w
                                                                    λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus x2 (s k n0)) v e1 e2
                                                          end of H13
                                                          we proceed by induction on H13 to prove 
                                                             or4
                                                               drop (S n0) O (CHead x1 (Bind b) x0) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                             case or4_intro0 : H14:drop n0 O x1 e 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                   consider H14
                                                                   we proved drop n0 O x1 e
                                                                   that is equivalent to drop (r (Bind b) n0) O x1 e
                                                                   by (drop_drop . . . . previous .)
                                                                   we proved drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                   by (or4_intro0 . . . . previous)

                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                             case or4_intro1 : H14:ex3_4 K C T T λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u) λk0:K.λe0:C.λ:T.λw:T.drop n0 O x1 (CHead e0 k0 w) λk0:K.λ:C.λu:T.λw:T.subst0 (minus x2 (s k0 n0)) v u w 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H14 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                      case ex3_4_intro : x3:K x4:C x5:T x6:T H15:eq C e (CHead x4 x3 x5) H16:drop n0 O x1 (CHead x4 x3 x6) H17:subst0 (minus x2 (s x3 n0)) v x5 x6 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x4 x3 x5) (CHead x4 x3 x5)
                                                                            end of h1
                                                                            (h2
                                                                               consider H16
                                                                               we proved drop n0 O x1 (CHead x4 x3 x6)
                                                                               that is equivalent to drop (r (Bind b) n0) O x1 (CHead x4 x3 x6)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x1 (Bind b) x0) (CHead x4 x3 x6)
                                                                            end of h2
                                                                            (h3
                                                                               (h1
                                                                                  consider H17
                                                                                  we proved subst0 (minus x2 (s x3 n0)) v x5 x6
subst0 (minus (s (Bind b) x2) (S (s x3 n0))) v x5 x6
                                                                               end of h1
                                                                               (h2
                                                                                  by (s_S . .)
eq nat (s x3 (S n0)) (S (s x3 n0))
                                                                               end of h2
                                                                               by (eq_ind_r . . . h1 . h2)
subst0 (minus (s (Bind b) x2) (s x3 (S n0))) v x5 x6
                                                                            end of h3
                                                                            by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                                                            we proved 
                                                                               ex3_4
                                                                                 K
                                                                                 C
                                                                                 T
                                                                                 T
                                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x4 x3 x5) (CHead e0 k0 u)
                                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                            by (or4_intro1 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Bind b) x0) (CHead x4 x3 x5)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x4 x3 x5) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x4 x3 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x4 x3 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H15)

                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                             case or4_intro2 : H14:ex3_4 K C C T λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u) λk0:K.λ:C.λe2:C.λu:T.drop n0 O x1 (CHead e2 k0 u) λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus x2 (s k0 n0)) v e1 e2 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H14 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                      case ex3_4_intro : x3:K x4:C x5:C x6:T H15:eq C e (CHead x4 x3 x6) H16:drop n0 O x1 (CHead x5 x3 x6) H17:csubst0 (minus x2 (s x3 n0)) v x4 x5 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x4 x3 x6) (CHead x4 x3 x6)
                                                                            end of h1
                                                                            (h2
                                                                               consider H16
                                                                               we proved drop n0 O x1 (CHead x5 x3 x6)
                                                                               that is equivalent to drop (r (Bind b) n0) O x1 (CHead x5 x3 x6)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x1 (Bind b) x0) (CHead x5 x3 x6)
                                                                            end of h2
                                                                            (h3
                                                                               (h1
                                                                                  consider H17
                                                                                  we proved csubst0 (minus x2 (s x3 n0)) v x4 x5
csubst0 (minus (s (Bind b) x2) (S (s x3 n0))) v x4 x5
                                                                               end of h1
                                                                               (h2
                                                                                  by (s_S . .)
eq nat (s x3 (S n0)) (S (s x3 n0))
                                                                               end of h2
                                                                               by (eq_ind_r . . . h1 . h2)
csubst0 (minus (s (Bind b) x2) (s x3 (S n0))) v x4 x5
                                                                            end of h3
                                                                            by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                                                            we proved 
                                                                               ex3_4
                                                                                 K
                                                                                 C
                                                                                 C
                                                                                 T
                                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                            by (or4_intro2 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Bind b) x0) (CHead x4 x3 x6)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H15)

                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                             case or4_intro3 : H14:ex4_5 K C C T T λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u) λk0:K.λ:C.λe2:C.λ:T.λw:T.drop n0 O x1 (CHead e2 k0 w) λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus x2 (s k0 n0)) v u w λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus x2 (s k0 n0)) v e1 e2 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H14 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                      case ex4_5_intro : x3:K x4:C x5:C x6:T x7:T H15:eq C e (CHead x4 x3 x6) H16:drop n0 O x1 (CHead x5 x3 x7) H17:subst0 (minus x2 (s x3 n0)) v x6 x7 H18:csubst0 (minus x2 (s x3 n0)) v x4 x5 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x4 x3 x6) (CHead x4 x3 x6)
                                                                            end of h1
                                                                            (h2
                                                                               consider H16
                                                                               we proved drop n0 O x1 (CHead x5 x3 x7)
                                                                               that is equivalent to drop (r (Bind b) n0) O x1 (CHead x5 x3 x7)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x1 (Bind b) x0) (CHead x5 x3 x7)
                                                                            end of h2
                                                                            (h3
                                                                               (h1
                                                                                  consider H17
                                                                                  we proved subst0 (minus x2 (s x3 n0)) v x6 x7
subst0 (minus (s (Bind b) x2) (S (s x3 n0))) v x6 x7
                                                                               end of h1
                                                                               (h2
                                                                                  by (s_S . .)
eq nat (s x3 (S n0)) (S (s x3 n0))
                                                                               end of h2
                                                                               by (eq_ind_r . . . h1 . h2)
subst0 (minus (s (Bind b) x2) (s x3 (S n0))) v x6 x7
                                                                            end of h3
                                                                            (h4
                                                                               (h1
                                                                                  consider H18
                                                                                  we proved csubst0 (minus x2 (s x3 n0)) v x4 x5
csubst0 (minus (s (Bind b) x2) (S (s x3 n0))) v x4 x5
                                                                               end of h1
                                                                               (h2
                                                                                  by (s_S . .)
eq nat (s x3 (S n0)) (S (s x3 n0))
                                                                               end of h2
                                                                               by (eq_ind_r . . . h1 . h2)
csubst0 (minus (s (Bind b) x2) (s x3 (S n0))) v x4 x5
                                                                            end of h4
                                                                            by (ex4_5_intro . . . . . . . . . . . . . . h1 h2 h3 h4)
                                                                            we proved 
                                                                               ex4_5
                                                                                 K
                                                                                 C
                                                                                 C
                                                                                 T
                                                                                 T
                                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                            by (or4_intro3 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Bind b) x0) (CHead x4 x3 x6)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H15)

                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                          we proved 
                                                             or4
                                                               drop (S n0) O (CHead x1 (Bind b) x0) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2

                                                          H10:drop (r (Bind b) n0) O c e
                                                            .c3:C
                                                                .v0:T
                                                                  .csubst0 (s (Bind b) x2) v0 c c3
                                                                    e0:C
                                                                         .drop (S n0) O c e0
                                                                           (or4
                                                                                drop (S n0) O c3 e0
                                                                                ex3_4
                                                                                  K
                                                                                  C
                                                                                  T
                                                                                  T
                                                                                  λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 u w
                                                                                ex3_4
                                                                                  K
                                                                                  C
                                                                                  C
                                                                                  T
                                                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 e1 e2
                                                                                ex4_5
                                                                                  K
                                                                                  C
                                                                                  C
                                                                                  T
                                                                                  T
                                                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 u w
                                                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 e1 e2)
                                                              H12:lt (S n0) (s (Bind b) x2)
                                                                   .or4
                                                                     drop (S n0) O (CHead x1 (Bind b) x0) e
                                                                     ex3_4
                                                                       K
                                                                       C
                                                                       T
                                                                       T
                                                                       λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                       λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)
                                                                       λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                     ex3_4
                                                                       K
                                                                       C
                                                                       C
                                                                       T
                                                                       λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                       λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)
                                                                       λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                                     ex4_5
                                                                       K
                                                                       C
                                                                       C
                                                                       T
                                                                       T
                                                                       λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                       λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w)
                                                                       λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w
                                                                       λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2
                                                       assume fF
                                                        suppose H10drop (r (Flat f) n0) O c e
                                                        suppose H11
                                                           c3:C
                                                             .v0:T
                                                               .csubst0 (s (Flat f) x2) v0 c c3
                                                                 e0:C
                                                                      .drop (S n0) O c e0
                                                                        (or4
                                                                             drop (S n0) O c3 e0
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                               λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 u w
                                                                             ex3_4
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                               λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 e1 e2
                                                                             ex4_5
                                                                               K
                                                                               C
                                                                               C
                                                                               T
                                                                               T
                                                                               λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                               λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                               λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 u w
                                                                               λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 e1 e2)
                                                        suppose lt (S n0) (s (Flat f) x2)
                                                          (H13
                                                             (h1
                                                                consider H7
                                                                we proved csubst0 x2 v c x1
csubst0 (s (Flat f) x2) v c x1
                                                             end of h1
                                                             (h2
                                                                consider H10
                                                                we proved drop (r (Flat f) n0) O c e
drop (S n0) O c e
                                                             end of h2
                                                             by (H11 . . h1 . h2)

                                                                or4
                                                                  drop (S n0) O x1 e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O x1 (CHead e1 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O x1 (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O x1 (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                          end of H13
                                                          consider H13
                                                          we proved 
                                                             or4
                                                               drop (S n0) O x1 e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O x1 (CHead e1 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O x1 (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O x1 (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                          that is equivalent to 
                                                             or4
                                                               drop (S n0) O x1 e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O x1 (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus x2 (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O x1 (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus x2 (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O x1 (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus x2 (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus x2 (s k0 (S n0))) v e1 e2
                                                          we proceed by induction on the previous result to prove 
                                                             or4
                                                               drop (S n0) O (CHead x1 (Flat f) x0) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                             case or4_intro0 : H14:drop (S n0) O x1 e 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                   consider H14
                                                                   we proved drop (S n0) O x1 e
                                                                   that is equivalent to drop (r (Flat f) n0) O x1 e
                                                                   by (drop_drop . . . . previous .)
                                                                   we proved drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                   by (or4_intro0 . . . . previous)

                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                             case or4_intro1 : H14:ex3_4 K C T T λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u) λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O x1 (CHead e0 k0 w) λk0:K.λ:C.λu:T.λw:T.subst0 (minus x2 (s k0 (S n0))) v u w 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H14 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                      case ex3_4_intro : x3:K x4:C x5:T x6:T H15:eq C e (CHead x4 x3 x5) H16:drop (S n0) O x1 (CHead x4 x3 x6) H17:subst0 (minus x2 (s x3 (S n0))) v x5 x6 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x4 x3 x5) (CHead x4 x3 x5)
                                                                            end of h1
                                                                            (h2
                                                                               consider H16
                                                                               we proved drop (S n0) O x1 (CHead x4 x3 x6)
                                                                               that is equivalent to drop (r (Flat f) n0) O x1 (CHead x4 x3 x6)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x1 (Flat f) x0) (CHead x4 x3 x6)
                                                                            end of h2
                                                                            (h3
                                                                               consider H17
                                                                               we proved subst0 (minus x2 (s x3 (S n0))) v x5 x6
subst0 (minus (s (Flat f) x2) (s x3 (S n0))) v x5 x6
                                                                            end of h3
                                                                            by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                                                            we proved 
                                                                               ex3_4
                                                                                 K
                                                                                 C
                                                                                 T
                                                                                 T
                                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x4 x3 x5) (CHead e0 k0 u)
                                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                            by (or4_intro1 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Flat f) x0) (CHead x4 x3 x5)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x4 x3 x5) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x4 x3 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x4 x3 x5) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H15)

                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                             case or4_intro2 : H14:ex3_4 K C C T λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u) λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O x1 (CHead e2 k0 u) λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus x2 (s k0 (S n0))) v e1 e2 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H14 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                      case ex3_4_intro : x3:K x4:C x5:C x6:T H15:eq C e (CHead x4 x3 x6) H16:drop (S n0) O x1 (CHead x5 x3 x6) H17:csubst0 (minus x2 (s x3 (S n0))) v x4 x5 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x4 x3 x6) (CHead x4 x3 x6)
                                                                            end of h1
                                                                            (h2
                                                                               consider H16
                                                                               we proved drop (S n0) O x1 (CHead x5 x3 x6)
                                                                               that is equivalent to drop (r (Flat f) n0) O x1 (CHead x5 x3 x6)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x1 (Flat f) x0) (CHead x5 x3 x6)
                                                                            end of h2
                                                                            (h3
                                                                               consider H17
                                                                               we proved csubst0 (minus x2 (s x3 (S n0))) v x4 x5
csubst0 (minus (s (Flat f) x2) (s x3 (S n0))) v x4 x5
                                                                            end of h3
                                                                            by (ex3_4_intro . . . . . . . . . . . h1 h2 h3)
                                                                            we proved 
                                                                               ex3_4
                                                                                 K
                                                                                 C
                                                                                 C
                                                                                 T
                                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                            by (or4_intro2 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Flat f) x0) (CHead x4 x3 x6)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H15)

                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                             case or4_intro3 : H14:ex4_5 K C C T T λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u) λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O x1 (CHead e2 k0 w) λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus x2 (s k0 (S n0))) v u w λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus x2 (s k0 (S n0))) v e1 e2 
                                                                the thesis becomes 
                                                                or4
                                                                  drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                    λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                    λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                  ex3_4
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                    λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                  ex4_5
                                                                    K
                                                                    C
                                                                    C
                                                                    T
                                                                    T
                                                                    λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                    λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                    λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                    λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                   we proceed by induction on H14 to prove 
                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                      case ex4_5_intro : x3:K x4:C x5:C x6:T x7:T H15:eq C e (CHead x4 x3 x6) H16:drop (S n0) O x1 (CHead x5 x3 x7) H17:subst0 (minus x2 (s x3 (S n0))) v x6 x7 H18:csubst0 (minus x2 (s x3 (S n0))) v x4 x5 
                                                                         the thesis becomes 
                                                                         or4
                                                                           drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                             λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                             λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                           ex3_4
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                             λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                           ex4_5
                                                                             K
                                                                             C
                                                                             C
                                                                             T
                                                                             T
                                                                             λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                             λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                             λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                             λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                            (h1
                                                                               by (refl_equal . .)
eq C (CHead x4 x3 x6) (CHead x4 x3 x6)
                                                                            end of h1
                                                                            (h2
                                                                               consider H16
                                                                               we proved drop (S n0) O x1 (CHead x5 x3 x7)
                                                                               that is equivalent to drop (r (Flat f) n0) O x1 (CHead x5 x3 x7)
                                                                               by (drop_drop . . . . previous .)
drop (S n0) O (CHead x1 (Flat f) x0) (CHead x5 x3 x7)
                                                                            end of h2
                                                                            (h3
                                                                               consider H17
                                                                               we proved subst0 (minus x2 (s x3 (S n0))) v x6 x7
subst0 (minus (s (Flat f) x2) (s x3 (S n0))) v x6 x7
                                                                            end of h3
                                                                            (h4
                                                                               consider H18
                                                                               we proved csubst0 (minus x2 (s x3 (S n0))) v x4 x5
csubst0 (minus (s (Flat f) x2) (s x3 (S n0))) v x4 x5
                                                                            end of h4
                                                                            by (ex4_5_intro . . . . . . . . . . . . . . h1 h2 h3 h4)
                                                                            we proved 
                                                                               ex4_5
                                                                                 K
                                                                                 C
                                                                                 C
                                                                                 T
                                                                                 T
                                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                            by (or4_intro3 . . . . previous)
                                                                            we proved 
                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Flat f) x0) (CHead x4 x3 x6)
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C (CHead x4 x3 x6) (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                            by (eq_ind_r . . . previous . H15)

                                                                               or4
                                                                                 drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                                   λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                                   λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                 ex3_4
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                                 ex4_5
                                                                                   K
                                                                                   C
                                                                                   C
                                                                                   T
                                                                                   T
                                                                                   λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                                   λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                                   λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                                   λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2

                                                                      or4
                                                                        drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                          λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                          λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                        ex3_4
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                          λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                        ex4_5
                                                                          K
                                                                          C
                                                                          C
                                                                          T
                                                                          T
                                                                          λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                          λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                          λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                          λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                          we proved 
                                                             or4
                                                               drop (S n0) O (CHead x1 (Flat f) x0) e
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                 λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                 λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                               ex3_4
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                 λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                               ex4_5
                                                                 K
                                                                 C
                                                                 C
                                                                 T
                                                                 T
                                                                 λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                 λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                 λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                 λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2

                                                          H10:drop (r (Flat f) n0) O c e
                                                            .H11:c3:C
                                                                         .v0:T
                                                                           .csubst0 (s (Flat f) x2) v0 c c3
                                                                             e0:C
                                                                                  .drop (S n0) O c e0
                                                                                    (or4
                                                                                         drop (S n0) O c3 e0
                                                                                         ex3_4
                                                                                           K
                                                                                           C
                                                                                           T
                                                                                           T
                                                                                           λk0:K.λe1:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                           λk0:K.λe1:C.λ:T.λw:T.drop (S n0) O c3 (CHead e1 k0 w)
                                                                                           λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 u w
                                                                                         ex3_4
                                                                                           K
                                                                                           C
                                                                                           C
                                                                                           T
                                                                                           λk0:K.λe1:C.λ:C.λu:T.eq C e0 (CHead e1 k0 u)
                                                                                           λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c3 (CHead e2 k0 u)
                                                                                           λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 e1 e2
                                                                                         ex4_5
                                                                                           K
                                                                                           C
                                                                                           C
                                                                                           T
                                                                                           T
                                                                                           λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e0 (CHead e1 k0 u)
                                                                                           λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c3 (CHead e2 k0 w)
                                                                                           λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 u w
                                                                                           λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 e1 e2)
                                                              .lt (S n0) (s (Flat f) x2)
                                                                (or4
                                                                     drop (S n0) O (CHead x1 (Flat f) x0) e
                                                                     ex3_4
                                                                       K
                                                                       C
                                                                       T
                                                                       T
                                                                       λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                                       λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)
                                                                       λk0:K.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                     ex3_4
                                                                       K
                                                                       C
                                                                       C
                                                                       T
                                                                       λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                                       λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)
                                                                       λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2
                                                                     ex4_5
                                                                       K
                                                                       C
                                                                       C
                                                                       T
                                                                       T
                                                                       λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                                       λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w)
                                                                       λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w
                                                                       λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2)
                                                    by (previous . previous H8 H9)
                                                    we proved 
                                                       or4
                                                         drop (S n0) O (CHead x1 k x0) e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk1:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k1 u)
                                                           λk1:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 k x0) (CHead e0 k1 w)
                                                           λk1:K.λ:C.λu:T.λw:T.subst0 (minus (s k x2) (s k1 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk1:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k1 u)
                                                           λk1:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 k x0) (CHead e2 k1 u)
                                                           λk1:K.λe1:C.λe2:C.λ:T.csubst0 (minus (s k x2) (s k1 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk1:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k1 u)
                                                           λk1:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 k x0) (CHead e2 k1 w)
                                                           λk1:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus (s k x2) (s k1 (S n0))) v u w
                                                           λk1:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus (s k x2) (s k1 (S n0))) v e1 e2
                                                    by (eq_ind_r . . . previous . H4)
                                                    we proved 
                                                       or4
                                                         drop (S n0) O (CHead x1 k x0) e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                           λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O (CHead x1 k x0) (CHead e0 k0 w)
                                                           λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O (CHead x1 k x0) (CHead e2 k0 u)
                                                           λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O (CHead x1 k x0) (CHead e2 k0 w)
                                                           λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                           λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                    by (eq_ind_r . . . previous . H5)

                                                       or4
                                                         drop (S n0) O c2 e
                                                         ex3_4
                                                           K
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                           λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                           λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                         ex3_4
                                                           K
                                                           C
                                                           C
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                           λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                         ex4_5
                                                           K
                                                           C
                                                           C
                                                           T
                                                           T
                                                           λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                           λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                           λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                           λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2

                                              or4
                                                drop (S n0) O c2 e
                                                ex3_4
                                                  K
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                  λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                  λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                ex3_4
                                                  K
                                                  C
                                                  C
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                  λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                                ex4_5
                                                  K
                                                  C
                                                  C
                                                  T
                                                  T
                                                  λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                  λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                  λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                  λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                  we proved 
                                     or4
                                       drop (S n0) O c2 e
                                       ex3_4
                                         K
                                         C
                                         T
                                         T
                                         λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                         λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                         λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                       ex3_4
                                         K
                                         C
                                         C
                                         T
                                         λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                         λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                         λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                       ex4_5
                                         K
                                         C
                                         C
                                         T
                                         T
                                         λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                         λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                         λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                         λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2

                                  c2:C
                                    .v:T
                                      .H1:csubst0 i v (CHead c k t) c2
                                        .e:C
                                          .H2:drop (S n0) O (CHead c k t) e
                                            .or4
                                              drop (S n0) O c2 e
                                              ex3_4
                                                K
                                                C
                                                T
                                                T
                                                λk0:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k0 u)
                                                λk0:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k0 w)
                                                λk0:K.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                              ex3_4
                                                K
                                                C
                                                C
                                                T
                                                λk0:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k0 u)
                                                λk0:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k0 u)
                                                λk0:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                                              ex4_5
                                                K
                                                C
                                                C
                                                T
                                                T
                                                λk0:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k0 u)
                                                λk0:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k0 w)
                                                λk0:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k0 (S n0))) v u w
                                                λk0:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k0 (S n0))) v e1 e2
                      we proved 
                         c2:C
                           .v:T
                             .csubst0 i v c1 c2
                               e:C
                                    .drop (S n0) O c1 e
                                      (or4
                                           drop (S n0) O c2 e
                                           ex3_4
                                             K
                                             C
                                             T
                                             T
                                             λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                             λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                             λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                           ex3_4
                                             K
                                             C
                                             C
                                             T
                                             λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                             λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                             λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                           ex4_5
                                             K
                                             C
                                             C
                                             T
                                             T
                                             λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                             λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                             λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                             λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2)

                      i:nat
                        .H:lt (S n0) i
                          .c1:C
                            .c2:C
                              .v:T
                                .csubst0 i v c1 c2
                                  e:C
                                       .drop (S n0) O c1 e
                                         (or4
                                              drop (S n0) O c2 e
                                              ex3_4
                                                K
                                                C
                                                T
                                                T
                                                λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                                λk:K.λe0:C.λ:T.λw:T.drop (S n0) O c2 (CHead e0 k w)
                                                λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                              ex3_4
                                                K
                                                C
                                                C
                                                T
                                                λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                                λk:K.λ:C.λe2:C.λu:T.drop (S n0) O c2 (CHead e2 k u)
                                                λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2
                                              ex4_5
                                                K
                                                C
                                                C
                                                T
                                                T
                                                λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                                λk:K.λ:C.λe2:C.λ:T.λw:T.drop (S n0) O c2 (CHead e2 k w)
                                                λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k (S n0))) v u w
                                                λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k (S n0))) v e1 e2)
          we proved 
             i:nat
               .lt n i
                 c1:C
                      .c2:C
                        .v:T
                          .csubst0 i v c1 c2
                            e:C
                                 .drop n O c1 e
                                   (or4
                                        drop n O c2 e
                                        ex3_4
                                          K
                                          C
                                          T
                                          T
                                          λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                          λk:K.λe0:C.λ:T.λw:T.drop n O c2 (CHead e0 k w)
                                          λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                                        ex3_4
                                          K
                                          C
                                          C
                                          T
                                          λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                          λk:K.λ:C.λe2:C.λu:T.drop n O c2 (CHead e2 k u)
                                          λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k n)) v e1 e2
                                        ex4_5
                                          K
                                          C
                                          C
                                          T
                                          T
                                          λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                          λk:K.λ:C.λe2:C.λ:T.λw:T.drop n O c2 (CHead e2 k w)
                                          λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                                          λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k n)) v e1 e2)
       we proved 
          n:nat
            .i:nat
              .lt n i
                c1:C
                     .c2:C
                       .v:T
                         .csubst0 i v c1 c2
                           e:C
                                .drop n O c1 e
                                  (or4
                                       drop n O c2 e
                                       ex3_4
                                         K
                                         C
                                         T
                                         T
                                         λk:K.λe0:C.λu:T.λ:T.eq C e (CHead e0 k u)
                                         λk:K.λe0:C.λ:T.λw:T.drop n O c2 (CHead e0 k w)
                                         λk:K.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                                       ex3_4
                                         K
                                         C
                                         C
                                         T
                                         λk:K.λe1:C.λ:C.λu:T.eq C e (CHead e1 k u)
                                         λk:K.λ:C.λe2:C.λu:T.drop n O c2 (CHead e2 k u)
                                         λk:K.λe1:C.λe2:C.λ:T.csubst0 (minus i (s k n)) v e1 e2
                                       ex4_5
                                         K
                                         C
                                         C
                                         T
                                         T
                                         λk:K.λe1:C.λ:C.λu:T.λ:T.eq C e (CHead e1 k u)
                                         λk:K.λ:C.λe2:C.λ:T.λw:T.drop n O c2 (CHead e2 k w)
                                         λk:K.λ:C.λ:C.λu:T.λw:T.subst0 (minus i (s k n)) v u w
                                         λk:K.λe1:C.λe2:C.λ:T.λ:T.csubst0 (minus i (s k n)) v e1 e2)