DEFINITION csubst0_drop_eq_back()
TYPE =
∀n:nat
.∀c1:C
.∀c2:C
.∀v:T
.csubst0 n v c1 c2
→∀e:C
.drop n O c2 e
→(or4
drop n O c1 e
ex3_4
F
C
T
T
λf:F.λe0:C.λ:T.λu2:T.eq C e (CHead e0 (Flat f) u2)
λf:F.λe0:C.λu1:T.λ:T.drop n O c1 (CHead e0 (Flat f) u1)
λ:F.λ:C.λu1:T.λu2:T.subst0 O v u1 u2
ex3_4
F
C
C
T
λf:F.λ:C.λe2:C.λu:T.eq C e (CHead e2 (Flat f) u)
λf:F.λe1:C.λ:C.λu:T.drop n O c1 (CHead e1 (Flat f) u)
λ:F.λe1:C.λe2:C.λ:T.csubst0 O v e1 e2
ex4_5
F
C
C
T
T
λf:F.λ:C.λe2:C.λ:T.λu2:T.eq C e (CHead e2 (Flat f) u2)
λf:F.λe1:C.λ:C.λu1:T.λ:T.drop n O c1 (CHead e1 (Flat f) u1)
λ:F.λ:C.λ:C.λu1:T.λu2:T.subst0 O v u1 u2
λ:F.λe1:C.λe2:C.λ:T.λ:T.csubst0 O v e1 e2)
BODY =
Show proof