DEFINITION csubst0_ind()
TYPE =
∀P:nat→T→C→C→Prop
.∀k:K.∀n:nat.∀t:T.∀t1:T.∀t2:T.(subst0 n t t1 t2)→∀c:C.(P (s k n) t (CHead c k t1) (CHead c k t2))
→(∀k:K
.∀n:nat
.∀c:C
.∀c1:C
.∀t:T
.(csubst0 n t c c1)→(P n t c c1)→∀t1:T.(P (s k n) t (CHead c k t1) (CHead c1 k t1))
→(∀k:K
.∀n:nat
.∀t:T
.∀t1:T
.∀t2:T
.subst0 n t t1 t2
→∀c:C
.∀c1:C.(csubst0 n t c c1)→(P n t c c1)→(P (s k n) t (CHead c k t1) (CHead c1 k t2))
→∀n:nat.∀t:T.∀c:C.∀c1:C.(csubst0 n t c c1)→(P n t c c1)))
BODY =
Show proof