DEFINITION csubst0_clear_S()
TYPE =
∀c1:C
.∀c2:C
.∀v:T
.∀i:nat
.csubst0 (S i) v c1 c2
→∀c:C
.clear c1 c
→(or4
clear c2 c
ex3_4
B
C
T
T
λb:B.λe:C.λu1:T.λ:T.eq C c (CHead e (Bind b) u1)
λb:B.λe:C.λ:T.λu2:T.clear c2 (CHead e (Bind b) u2)
λ:B.λ:C.λu1:T.λu2:T.subst0 i v u1 u2
ex3_4
B
C
C
T
λb:B.λe1:C.λ:C.λu:T.eq C c (CHead e1 (Bind b) u)
λb:B.λ:C.λe2:C.λu:T.clear c2 (CHead e2 (Bind b) u)
λ:B.λe1:C.λe2:C.λ:T.csubst0 i v e1 e2
ex4_5
B
C
C
T
T
λb:B.λe1:C.λ:C.λu1:T.λ:T.eq C c (CHead e1 (Bind b) u1)
λb:B.λ:C.λe2:C.λ:T.λu2:T.clear c2 (CHead e2 (Bind b) u2)
λ:B.λ:C.λ:C.λu1:T.λu2:T.subst0 i v u1 u2
λ:B.λe1:C.λe2:C.λ:T.λ:T.csubst0 i v e1 e2)
BODY =
Show proof