DEFINITION csubc_getl_conf()
TYPE =
∀g:G
.∀c1:C
.∀e1:C
.∀i:nat.(getl i c1 e1)→∀c2:C.(csubc g c1 c2)→(ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2)
BODY =
assume g: G
assume c1: C
assume e1: C
assume i: nat
suppose H: getl i c1 e1
assume c2: C
suppose H0: csubc g c1 c2
(H1)
by (getl_gen_all . . . H)
ex2 C λe:C.drop i O c1 e λe:C.clear e e1
end of H1
we proceed by induction on H1 to prove ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
case ex_intro2 : x:C H2:drop i O c1 x H3:clear x e1 ⇒
the thesis becomes ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
(H_x)
by (csubc_drop_conf_O . . . . H2 . H0)
ex2 C λe2:C.drop i O c2 e2 λe2:C.csubc g x e2
end of H_x
(H4) consider H_x
we proceed by induction on H4 to prove ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
case ex_intro2 : x0:C H5:drop i O c2 x0 H6:csubc g x x0 ⇒
the thesis becomes ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
(H_x0)
by (csubc_clear_conf . . . H3 . H6)
ex2 C λe2:C.clear x0 e2 λe2:C.csubc g e1 e2
end of H_x0
(H7) consider H_x0
we proceed by induction on H7 to prove ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
case ex_intro2 : x1:C H8:clear x0 x1 H9:csubc g e1 x1 ⇒
the thesis becomes ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
by (getl_intro . . . . H5 H8)
we proved getl i c2 x1
by (ex_intro2 . . . . previous H9)
ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
we proved ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2
we proved
∀g:G
.∀c1:C
.∀e1:C
.∀i:nat.(getl i c1 e1)→∀c2:C.(csubc g c1 c2)→(ex2 C λe2:C.getl i c2 e2 λe2:C.csubc g e1 e2)