DEFINITION csubc_gen_head_l()
TYPE =
       g:G
         .c1:C
           .x:C
             .v:T
               .k:K
                 .csubc g (CHead c1 k v) x
                   (or3
                        ex2 C λc2:C.eq C x (CHead c2 k v) λc2:C.csubc g c1 c2
                        ex5_3
                          C
                          T
                          A
                          λ:C.λ:T.λ:A.eq K k (Bind Abst)
                          λc2:C.λw:T.λ:A.eq C x (CHead c2 (Bind Abbr) w)
                          λc2:C.λ:T.λ:A.csubc g c1 c2
                          λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                          λc2:C.λw:T.λa:A.sc3 g a c2 w
                        ex4_3
                          B
                          C
                          T
                          λb:B.λc2:C.λv2:T.eq C x (CHead c2 (Bind b) v2)
                          λ:B.λ:C.λ:T.eq K k (Bind Void)
                          λb:B.λ:C.λ:T.not (eq B b Void)
                          λ:B.λc2:C.λ:T.csubc g c1 c2)
BODY =
        assume gG
        assume c1C
        assume xC
        assume vT
        assume kK
        suppose Hcsubc g (CHead c1 k v) x
           assume yC
           suppose H0csubc g y x
             we proceed by induction on H0 to prove 
                eq C y (CHead c1 k v)
                  (or3
                       ex2 C λc2:C.eq C x (CHead c2 k v) λc2:C.csubc g c1 c2
                       ex5_3
                         C
                         T
                         A
                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                         λc2:C.λw:T.λ:A.eq C x (CHead c2 (Bind Abbr) w)
                         λc2:C.λ:T.λ:A.csubc g c1 c2
                         λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                         λc2:C.λw:T.λa:A.sc3 g a c2 w
                       ex4_3
                         B
                         C
                         T
                         λb:B.λc2:C.λv2:T.eq C x (CHead c2 (Bind b) v2)
                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                         λb:B.λ:C.λ:T.not (eq B b Void)
                         λ:B.λc2:C.λ:T.csubc g c1 c2)
                case csubc_sort : n:nat 
                   the thesis becomes 
                   H1:eq C (CSort n) (CHead c1 k v)
                     .or3
                       ex2 C λc2:C.eq C (CSort n) (CHead c2 k v) λc2:C.csubc g c1 c2
                       ex5_3
                         C
                         T
                         A
                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                         λc2:C.λw:T.λ:A.eq C (CSort n) (CHead c2 (Bind Abbr) w)
                         λc2:C.λ:T.λ:A.csubc g c1 c2
                         λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                         λc2:C.λw:T.λa:A.sc3 g a c2 w
                       ex4_3
                         B
                         C
                         T
                         λb:B.λc2:C.λv2:T.eq C (CSort n) (CHead c2 (Bind b) v2)
                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                         λb:B.λ:C.λ:T.not (eq B b Void)
                         λ:B.λc2:C.λ:T.csubc g c1 c2
                      suppose H1eq C (CSort n) (CHead c1 k v)
                         (H2
                            we proceed by induction on H1 to prove <λ:C.Prop> CASE CHead c1 k v OF CSort True | CHead   False
                               case refl_equal : 
                                  the thesis becomes <λ:C.Prop> CASE CSort n OF CSort True | CHead   False
                                     consider I
                                     we proved True
<λ:C.Prop> CASE CSort n OF CSort True | CHead   False
<λ:C.Prop> CASE CHead c1 k v OF CSort True | CHead   False
                         end of H2
                         consider H2
                         we proved <λ:C.Prop> CASE CHead c1 k v OF CSort True | CHead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            or3
                              ex2 C λc2:C.eq C (CSort n) (CHead c2 k v) λc2:C.csubc g c1 c2
                              ex5_3
                                C
                                T
                                A
                                λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                λc2:C.λw:T.λ:A.eq C (CSort n) (CHead c2 (Bind Abbr) w)
                                λc2:C.λ:T.λ:A.csubc g c1 c2
                                λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                λc2:C.λw:T.λa:A.sc3 g a c2 w
                              ex4_3
                                B
                                C
                                T
                                λb:B.λc2:C.λv2:T.eq C (CSort n) (CHead c2 (Bind b) v2)
                                λ:B.λ:C.λ:T.eq K k (Bind Void)
                                λb:B.λ:C.λ:T.not (eq B b Void)
                                λ:B.λc2:C.λ:T.csubc g c1 c2
                         we proved 
                            or3
                              ex2 C λc2:C.eq C (CSort n) (CHead c2 k v) λc2:C.csubc g c1 c2
                              ex5_3
                                C
                                T
                                A
                                λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                λc2:C.λw:T.λ:A.eq C (CSort n) (CHead c2 (Bind Abbr) w)
                                λc2:C.λ:T.λ:A.csubc g c1 c2
                                λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                λc2:C.λw:T.λa:A.sc3 g a c2 w
                              ex4_3
                                B
                                C
                                T
                                λb:B.λc2:C.λv2:T.eq C (CSort n) (CHead c2 (Bind b) v2)
                                λ:B.λ:C.λ:T.eq K k (Bind Void)
                                λb:B.λ:C.λ:T.not (eq B b Void)
                                λ:B.λc2:C.λ:T.csubc g c1 c2

                         H1:eq C (CSort n) (CHead c1 k v)
                           .or3
                             ex2 C λc2:C.eq C (CSort n) (CHead c2 k v) λc2:C.csubc g c1 c2
                             ex5_3
                               C
                               T
                               A
                               λ:C.λ:T.λ:A.eq K k (Bind Abst)
                               λc2:C.λw:T.λ:A.eq C (CSort n) (CHead c2 (Bind Abbr) w)
                               λc2:C.λ:T.λ:A.csubc g c1 c2
                               λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                               λc2:C.λw:T.λa:A.sc3 g a c2 w
                             ex4_3
                               B
                               C
                               T
                               λb:B.λc2:C.λv2:T.eq C (CSort n) (CHead c2 (Bind b) v2)
                               λ:B.λ:C.λ:T.eq K k (Bind Void)
                               λb:B.λ:C.λ:T.not (eq B b Void)
                               λ:B.λc2:C.λ:T.csubc g c1 c2
                case csubc_head : c0:C c2:C H1:csubc g c0 c2 k0:K v0:T 
                   the thesis becomes 
                   H3:eq C (CHead c0 k0 v0) (CHead c1 k v)
                     .or3
                       ex2 C λc3:C.eq C (CHead c2 k0 v0) (CHead c3 k v) λc3:C.csubc g c1 c3
                       ex5_3
                         C
                         T
                         A
                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                         λc3:C.λw:T.λ:A.eq C (CHead c2 k0 v0) (CHead c3 (Bind Abbr) w)
                         λc3:C.λ:T.λ:A.csubc g c1 c3
                         λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                         λc3:C.λw:T.λa:A.sc3 g a c3 w
                       ex4_3
                         B
                         C
                         T
                         λb:B.λc3:C.λv2:T.eq C (CHead c2 k0 v0) (CHead c3 (Bind b) v2)
                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                         λb:B.λ:C.λ:T.not (eq B b Void)
                         λ:B.λc3:C.λ:T.csubc g c1 c3
                   (H2) by induction hypothesis we know 
                      eq C c0 (CHead c1 k v)
                        (or3
                             ex2 C λc3:C.eq C c2 (CHead c3 k v) λc3:C.csubc g c1 c3
                             ex5_3
                               C
                               T
                               A
                               λ:C.λ:T.λ:A.eq K k (Bind Abst)
                               λc3:C.λw:T.λ:A.eq C c2 (CHead c3 (Bind Abbr) w)
                               λc3:C.λ:T.λ:A.csubc g c1 c3
                               λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                               λc3:C.λw:T.λa:A.sc3 g a c3 w
                             ex4_3
                               B
                               C
                               T
                               λb:B.λc3:C.λv2:T.eq C c2 (CHead c3 (Bind b) v2)
                               λ:B.λ:C.λ:T.eq K k (Bind Void)
                               λb:B.λ:C.λ:T.not (eq B b Void)
                               λ:B.λc3:C.λ:T.csubc g c1 c3)
                      suppose H3eq C (CHead c0 k0 v0) (CHead c1 k v)
                         (H4
                            by (f_equal . . . . . H3)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c0 k0 v0 OF CSort c0 | CHead c  c
                                 <λ:C.C> CASE CHead c1 k v OF CSort c0 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c0 | CHead c  c (CHead c0 k0 v0)
                                 λe:C.<λ:C.C> CASE e OF CSort c0 | CHead c  c (CHead c1 k v)
                         end of H4
                         (h1
                            (H5
                               by (f_equal . . . . . H3)
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c0 k0 v0 OF CSort k0 | CHead  k1 k1
                                    <λ:C.K> CASE CHead c1 k v OF CSort k0 | CHead  k1 k1

                                  eq
                                    K
                                    λe:C.<λ:C.K> CASE e OF CSort k0 | CHead  k1 k1 (CHead c0 k0 v0)
                                    λe:C.<λ:C.K> CASE e OF CSort k0 | CHead  k1 k1 (CHead c1 k v)
                            end of H5
                            (h1
                               (H6
                                  by (f_equal . . . . . H3)
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c0 k0 v0 OF CSort v0 | CHead   tt
                                       <λ:C.T> CASE CHead c1 k v OF CSort v0 | CHead   tt

                                     eq
                                       T
                                       λe:C.<λ:C.T> CASE e OF CSort v0 | CHead   tt (CHead c0 k0 v0)
                                       λe:C.<λ:C.T> CASE e OF CSort v0 | CHead   tt (CHead c1 k v)
                               end of H6
                                suppose H7eq K k0 k
                                suppose H8eq C c0 c1
                                  (h1
                                     (H10
                                        we proceed by induction on H8 to prove csubc g c1 c2
                                           case refl_equal : 
                                              the thesis becomes the hypothesis H1
csubc g c1 c2
                                     end of H10
                                     by (refl_equal . .)
                                     we proved eq C (CHead c2 k v) (CHead c2 k v)
                                     by (ex_intro2 . . . . previous H10)
                                     we proved ex2 C λc3:C.eq C (CHead c2 k v) (CHead c3 k v) λc3:C.csubc g c1 c3
                                     by (or3_intro0 . . . previous)
                                     we proved 
                                        or3
                                          ex2 C λc3:C.eq C (CHead c2 k v) (CHead c3 k v) λc3:C.csubc g c1 c3
                                          ex5_3
                                            C
                                            T
                                            A
                                            λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                            λc3:C.λw:T.λ:A.eq C (CHead c2 k v) (CHead c3 (Bind Abbr) w)
                                            λc3:C.λ:T.λ:A.csubc g c1 c3
                                            λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                            λc3:C.λw:T.λa:A.sc3 g a c3 w
                                          ex4_3
                                            B
                                            C
                                            T
                                            λb:B.λc3:C.λv2:T.eq C (CHead c2 k v) (CHead c3 (Bind b) v2)
                                            λ:B.λ:C.λ:T.eq K k (Bind Void)
                                            λb:B.λ:C.λ:T.not (eq B b Void)
                                            λ:B.λc3:C.λ:T.csubc g c1 c3
                                     by (eq_ind_r . . . previous . H7)

                                        or3
                                          ex2 C λc3:C.eq C (CHead c2 k0 v) (CHead c3 k v) λc3:C.csubc g c1 c3
                                          ex5_3
                                            C
                                            T
                                            A
                                            λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                            λc3:C.λw:T.λ:A.eq C (CHead c2 k0 v) (CHead c3 (Bind Abbr) w)
                                            λc3:C.λ:T.λ:A.csubc g c1 c3
                                            λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                            λc3:C.λw:T.λa:A.sc3 g a c3 w
                                          ex4_3
                                            B
                                            C
                                            T
                                            λb:B.λc3:C.λv2:T.eq C (CHead c2 k0 v) (CHead c3 (Bind b) v2)
                                            λ:B.λ:C.λ:T.eq K k (Bind Void)
                                            λb:B.λ:C.λ:T.not (eq B b Void)
                                            λ:B.λc3:C.λ:T.csubc g c1 c3
                                  end of h1
                                  (h2
                                     consider H6
                                     we proved 
                                        eq
                                          T
                                          <λ:C.T> CASE CHead c0 k0 v0 OF CSort v0 | CHead   tt
                                          <λ:C.T> CASE CHead c1 k v OF CSort v0 | CHead   tt
eq T v0 v
                                  end of h2
                                  by (eq_ind_r . . . h1 . h2)
                                  we proved 
                                     or3
                                       ex2 C λc3:C.eq C (CHead c2 k0 v0) (CHead c3 k v) λc3:C.csubc g c1 c3
                                       ex5_3
                                         C
                                         T
                                         A
                                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                         λc3:C.λw:T.λ:A.eq C (CHead c2 k0 v0) (CHead c3 (Bind Abbr) w)
                                         λc3:C.λ:T.λ:A.csubc g c1 c3
                                         λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                         λc3:C.λw:T.λa:A.sc3 g a c3 w
                                       ex4_3
                                         B
                                         C
                                         T
                                         λb:B.λc3:C.λv2:T.eq C (CHead c2 k0 v0) (CHead c3 (Bind b) v2)
                                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                                         λb:B.λ:C.λ:T.not (eq B b Void)
                                         λ:B.λc3:C.λ:T.csubc g c1 c3

                                  eq K k0 k
                                    (eq C c0 c1
                                         (or3
                                              ex2 C λc3:C.eq C (CHead c2 k0 v0) (CHead c3 k v) λc3:C.csubc g c1 c3
                                              ex5_3
                                                C
                                                T
                                                A
                                                λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                                λc3:C.λw:T.λ:A.eq C (CHead c2 k0 v0) (CHead c3 (Bind Abbr) w)
                                                λc3:C.λ:T.λ:A.csubc g c1 c3
                                                λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                                λc3:C.λw:T.λa:A.sc3 g a c3 w
                                              ex4_3
                                                B
                                                C
                                                T
                                                λb:B.λc3:C.λv2:T.eq C (CHead c2 k0 v0) (CHead c3 (Bind b) v2)
                                                λ:B.λ:C.λ:T.eq K k (Bind Void)
                                                λb:B.λ:C.λ:T.not (eq B b Void)
                                                λ:B.λc3:C.λ:T.csubc g c1 c3))
                            end of h1
                            (h2
                               consider H5
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c0 k0 v0 OF CSort k0 | CHead  k1 k1
                                    <λ:C.K> CASE CHead c1 k v OF CSort k0 | CHead  k1 k1
eq K k0 k
                            end of h2
                            by (h1 h2)

                               eq C c0 c1
                                 (or3
                                      ex2 C λc3:C.eq C (CHead c2 k0 v0) (CHead c3 k v) λc3:C.csubc g c1 c3
                                      ex5_3
                                        C
                                        T
                                        A
                                        λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                        λc3:C.λw:T.λ:A.eq C (CHead c2 k0 v0) (CHead c3 (Bind Abbr) w)
                                        λc3:C.λ:T.λ:A.csubc g c1 c3
                                        λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                        λc3:C.λw:T.λa:A.sc3 g a c3 w
                                      ex4_3
                                        B
                                        C
                                        T
                                        λb:B.λc3:C.λv2:T.eq C (CHead c2 k0 v0) (CHead c3 (Bind b) v2)
                                        λ:B.λ:C.λ:T.eq K k (Bind Void)
                                        λb:B.λ:C.λ:T.not (eq B b Void)
                                        λ:B.λc3:C.λ:T.csubc g c1 c3)
                         end of h1
                         (h2
                            consider H4
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c0 k0 v0 OF CSort c0 | CHead c  c
                                 <λ:C.C> CASE CHead c1 k v OF CSort c0 | CHead c  c
eq C c0 c1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or3
                              ex2 C λc3:C.eq C (CHead c2 k0 v0) (CHead c3 k v) λc3:C.csubc g c1 c3
                              ex5_3
                                C
                                T
                                A
                                λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                λc3:C.λw:T.λ:A.eq C (CHead c2 k0 v0) (CHead c3 (Bind Abbr) w)
                                λc3:C.λ:T.λ:A.csubc g c1 c3
                                λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                λc3:C.λw:T.λa:A.sc3 g a c3 w
                              ex4_3
                                B
                                C
                                T
                                λb:B.λc3:C.λv2:T.eq C (CHead c2 k0 v0) (CHead c3 (Bind b) v2)
                                λ:B.λ:C.λ:T.eq K k (Bind Void)
                                λb:B.λ:C.λ:T.not (eq B b Void)
                                λ:B.λc3:C.λ:T.csubc g c1 c3

                         H3:eq C (CHead c0 k0 v0) (CHead c1 k v)
                           .or3
                             ex2 C λc3:C.eq C (CHead c2 k0 v0) (CHead c3 k v) λc3:C.csubc g c1 c3
                             ex5_3
                               C
                               T
                               A
                               λ:C.λ:T.λ:A.eq K k (Bind Abst)
                               λc3:C.λw:T.λ:A.eq C (CHead c2 k0 v0) (CHead c3 (Bind Abbr) w)
                               λc3:C.λ:T.λ:A.csubc g c1 c3
                               λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                               λc3:C.λw:T.λa:A.sc3 g a c3 w
                             ex4_3
                               B
                               C
                               T
                               λb:B.λc3:C.λv2:T.eq C (CHead c2 k0 v0) (CHead c3 (Bind b) v2)
                               λ:B.λ:C.λ:T.eq K k (Bind Void)
                               λb:B.λ:C.λ:T.not (eq B b Void)
                               λ:B.λc3:C.λ:T.csubc g c1 c3
                case csubc_void : c0:C c2:C H1:csubc g c0 c2 b:B H3:not (eq B b Void) u1:T u2:T 
                   the thesis becomes 
                   H4:eq C (CHead c0 (Bind Void) u1) (CHead c1 k v)
                     .or3
                       ex2 C λc3:C.eq C (CHead c2 (Bind b) u2) (CHead c3 k v) λc3:C.csubc g c1 c3
                       ex5_3
                         C
                         T
                         A
                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                         λc3:C.λw:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)
                         λc3:C.λ:T.λ:A.csubc g c1 c3
                         λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                         λc3:C.λw:T.λa:A.sc3 g a c3 w
                       ex4_3
                         B
                         C
                         T
                         λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                         λb0:B.λ:C.λ:T.not (eq B b0 Void)
                         λ:B.λc3:C.λ:T.csubc g c1 c3
                   (H2) by induction hypothesis we know 
                      eq C c0 (CHead c1 k v)
                        (or3
                             ex2 C λc3:C.eq C c2 (CHead c3 k v) λc3:C.csubc g c1 c3
                             ex5_3
                               C
                               T
                               A
                               λ:C.λ:T.λ:A.eq K k (Bind Abst)
                               λc3:C.λw:T.λ:A.eq C c2 (CHead c3 (Bind Abbr) w)
                               λc3:C.λ:T.λ:A.csubc g c1 c3
                               λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                               λc3:C.λw:T.λa:A.sc3 g a c3 w
                             ex4_3
                               B
                               C
                               T
                               λb:B.λc3:C.λv2:T.eq C c2 (CHead c3 (Bind b) v2)
                               λ:B.λ:C.λ:T.eq K k (Bind Void)
                               λb:B.λ:C.λ:T.not (eq B b Void)
                               λ:B.λc3:C.λ:T.csubc g c1 c3)
                      suppose H4eq C (CHead c0 (Bind Void) u1) (CHead c1 k v)
                         (H5
                            by (f_equal . . . . . H4)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c0 (Bind Void) u1 OF CSort c0 | CHead c  c
                                 <λ:C.C> CASE CHead c1 k v OF CSort c0 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c0 | CHead c  c (CHead c0 (Bind Void) u1)
                                 λe:C.<λ:C.C> CASE e OF CSort c0 | CHead c  c (CHead c1 k v)
                         end of H5
                         (h1
                            (H6
                               by (f_equal . . . . . H4)
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c0 (Bind Void) u1 OF CSort Bind Void | CHead  k0 k0
                                    <λ:C.K> CASE CHead c1 k v OF CSort Bind Void | CHead  k0 k0

                                  eq
                                    K
                                    λe:C.<λ:C.K> CASE e OF CSort Bind Void | CHead  k0 k0
                                      CHead c0 (Bind Void) u1
                                    λe:C.<λ:C.K> CASE e OF CSort Bind Void | CHead  k0 k0 (CHead c1 k v)
                            end of H6
                            (H8
                               consider H6
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c0 (Bind Void) u1 OF CSort Bind Void | CHead  k0 k0
                                    <λ:C.K> CASE CHead c1 k v OF CSort Bind Void | CHead  k0 k0
eq K (Bind Void) k
                            end of H8
                            suppose H9eq C c0 c1
                               (H10
                                  we proceed by induction on H9 to prove 
                                     eq C c1 (CHead c1 k v)
                                       (or3
                                            ex2 C λc3:C.eq C c2 (CHead c3 k v) λc3:C.csubc g c1 c3
                                            ex5_3
                                              C
                                              T
                                              A
                                              λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                              λc3:C.λw:T.λ:A.eq C c2 (CHead c3 (Bind Abbr) w)
                                              λc3:C.λ:T.λ:A.csubc g c1 c3
                                              λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                              λc3:C.λw:T.λa:A.sc3 g a c3 w
                                            ex4_3
                                              B
                                              C
                                              T
                                              λb0:B.λc3:C.λv2:T.eq C c2 (CHead c3 (Bind b0) v2)
                                              λ:B.λ:C.λ:T.eq K k (Bind Void)
                                              λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                              λ:B.λc3:C.λ:T.csubc g c1 c3)
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H2

                                     eq C c1 (CHead c1 k v)
                                       (or3
                                            ex2 C λc3:C.eq C c2 (CHead c3 k v) λc3:C.csubc g c1 c3
                                            ex5_3
                                              C
                                              T
                                              A
                                              λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                              λc3:C.λw:T.λ:A.eq C c2 (CHead c3 (Bind Abbr) w)
                                              λc3:C.λ:T.λ:A.csubc g c1 c3
                                              λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                              λc3:C.λw:T.λa:A.sc3 g a c3 w
                                            ex4_3
                                              B
                                              C
                                              T
                                              λb0:B.λc3:C.λv2:T.eq C c2 (CHead c3 (Bind b0) v2)
                                              λ:B.λ:C.λ:T.eq K k (Bind Void)
                                              λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                              λ:B.λc3:C.λ:T.csubc g c1 c3)
                               end of H10
                               (H11
                                  we proceed by induction on H9 to prove csubc g c1 c2
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H1
csubc g c1 c2
                               end of H11
                               we proceed by induction on H8 to prove 
                                  or3
                                    ex2 C λc3:C.eq C (CHead c2 (Bind b) u2) (CHead c3 k v) λc3:C.csubc g c1 c3
                                    ex5_3
                                      C
                                      T
                                      A
                                      λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                      λc3:C.λw:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)
                                      λc3:C.λ:T.λ:A.csubc g c1 c3
                                      λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                      λc3:C.λw:T.λa:A.sc3 g a c3 w
                                    ex4_3
                                      B
                                      C
                                      T
                                      λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                                      λ:B.λ:C.λ:T.eq K k (Bind Void)
                                      λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                      λ:B.λc3:C.λ:T.csubc g c1 c3
                                  case refl_equal : 
                                     the thesis becomes 
                                     or3
                                       ex2
                                         C
                                         λc3:C.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Void) v)
                                         λc3:C.csubc g c1 c3
                                       ex5_3
                                         C
                                         T
                                         A
                                         λ:C.λ:T.λ:A.eq K (Bind Void) (Bind Abst)
                                         λc3:C.λw:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)
                                         λc3:C.λ:T.λ:A.csubc g c1 c3
                                         λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                         λc3:C.λw:T.λa:A.sc3 g a c3 w
                                       ex4_3
                                         B
                                         C
                                         T
                                         λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                                         λ:B.λ:C.λ:T.eq K (Bind Void) (Bind Void)
                                         λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                         λ:B.λc3:C.λ:T.csubc g c1 c3
                                        (h1
                                           by (refl_equal . .)
eq C (CHead c2 (Bind b) u2) (CHead c2 (Bind b) u2)
                                        end of h1
                                        (h2
                                           by (refl_equal . .)
eq K (Bind Void) (Bind Void)
                                        end of h2
                                        by (ex4_3_intro . . . . . . . . . . h1 h2 H3 H11)
                                        we proved 
                                           ex4_3
                                             B
                                             C
                                             T
                                             λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                                             λ:B.λ:C.λ:T.eq K (Bind Void) (Bind Void)
                                             λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                             λ:B.λc3:C.λ:T.csubc g c1 c3
                                        by (or3_intro2 . . . previous)

                                           or3
                                             ex2
                                               C
                                               λc3:C.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Void) v)
                                               λc3:C.csubc g c1 c3
                                             ex5_3
                                               C
                                               T
                                               A
                                               λ:C.λ:T.λ:A.eq K (Bind Void) (Bind Abst)
                                               λc3:C.λw:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)
                                               λc3:C.λ:T.λ:A.csubc g c1 c3
                                               λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                               λc3:C.λw:T.λa:A.sc3 g a c3 w
                                             ex4_3
                                               B
                                               C
                                               T
                                               λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                                               λ:B.λ:C.λ:T.eq K (Bind Void) (Bind Void)
                                               λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                               λ:B.λc3:C.λ:T.csubc g c1 c3
                               we proved 
                                  or3
                                    ex2 C λc3:C.eq C (CHead c2 (Bind b) u2) (CHead c3 k v) λc3:C.csubc g c1 c3
                                    ex5_3
                                      C
                                      T
                                      A
                                      λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                      λc3:C.λw:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)
                                      λc3:C.λ:T.λ:A.csubc g c1 c3
                                      λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                      λc3:C.λw:T.λa:A.sc3 g a c3 w
                                    ex4_3
                                      B
                                      C
                                      T
                                      λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                                      λ:B.λ:C.λ:T.eq K k (Bind Void)
                                      λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                      λ:B.λc3:C.λ:T.csubc g c1 c3

                               eq C c0 c1
                                 (or3
                                      ex2 C λc3:C.eq C (CHead c2 (Bind b) u2) (CHead c3 k v) λc3:C.csubc g c1 c3
                                      ex5_3
                                        C
                                        T
                                        A
                                        λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                        λc3:C.λw:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)
                                        λc3:C.λ:T.λ:A.csubc g c1 c3
                                        λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                        λc3:C.λw:T.λa:A.sc3 g a c3 w
                                      ex4_3
                                        B
                                        C
                                        T
                                        λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                                        λ:B.λ:C.λ:T.eq K k (Bind Void)
                                        λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                        λ:B.λc3:C.λ:T.csubc g c1 c3)
                         end of h1
                         (h2
                            consider H5
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c0 (Bind Void) u1 OF CSort c0 | CHead c  c
                                 <λ:C.C> CASE CHead c1 k v OF CSort c0 | CHead c  c
eq C c0 c1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or3
                              ex2 C λc3:C.eq C (CHead c2 (Bind b) u2) (CHead c3 k v) λc3:C.csubc g c1 c3
                              ex5_3
                                C
                                T
                                A
                                λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                λc3:C.λw:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)
                                λc3:C.λ:T.λ:A.csubc g c1 c3
                                λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                                λc3:C.λw:T.λa:A.sc3 g a c3 w
                              ex4_3
                                B
                                C
                                T
                                λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                                λ:B.λ:C.λ:T.eq K k (Bind Void)
                                λb0:B.λ:C.λ:T.not (eq B b0 Void)
                                λ:B.λc3:C.λ:T.csubc g c1 c3

                         H4:eq C (CHead c0 (Bind Void) u1) (CHead c1 k v)
                           .or3
                             ex2 C λc3:C.eq C (CHead c2 (Bind b) u2) (CHead c3 k v) λc3:C.csubc g c1 c3
                             ex5_3
                               C
                               T
                               A
                               λ:C.λ:T.λ:A.eq K k (Bind Abst)
                               λc3:C.λw:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)
                               λc3:C.λ:T.λ:A.csubc g c1 c3
                               λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                               λc3:C.λw:T.λa:A.sc3 g a c3 w
                             ex4_3
                               B
                               C
                               T
                               λb0:B.λc3:C.λv2:T.eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2)
                               λ:B.λ:C.λ:T.eq K k (Bind Void)
                               λb0:B.λ:C.λ:T.not (eq B b0 Void)
                               λ:B.λc3:C.λ:T.csubc g c1 c3
                case csubc_abst : c0:C c2:C H1:csubc g c0 c2 v0:T a:A H3:sc3 g (asucc g a) c0 v0 w:T H4:sc3 g a c2 w 
                   the thesis becomes 
                   H5:eq C (CHead c0 (Bind Abst) v0) (CHead c1 k v)
                     .or3
                       ex2 C λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 k v) λc3:C.csubc g c1 c3
                       ex5_3
                         C
                         T
                         A
                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                         λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                         λc3:C.λ:T.λ:A.csubc g c1 c3
                         λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                         λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                       ex4_3
                         B
                         C
                         T
                         λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                         λb:B.λ:C.λ:T.not (eq B b Void)
                         λ:B.λc3:C.λ:T.csubc g c1 c3
                   (H2) by induction hypothesis we know 
                      eq C c0 (CHead c1 k v)
                        (or3
                             ex2 C λc3:C.eq C c2 (CHead c3 k v) λc3:C.csubc g c1 c3
                             ex5_3
                               C
                               T
                               A
                               λ:C.λ:T.λ:A.eq K k (Bind Abst)
                               λc3:C.λw:T.λ:A.eq C c2 (CHead c3 (Bind Abbr) w)
                               λc3:C.λ:T.λ:A.csubc g c1 c3
                               λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                               λc3:C.λw:T.λa:A.sc3 g a c3 w
                             ex4_3
                               B
                               C
                               T
                               λb:B.λc3:C.λv2:T.eq C c2 (CHead c3 (Bind b) v2)
                               λ:B.λ:C.λ:T.eq K k (Bind Void)
                               λb:B.λ:C.λ:T.not (eq B b Void)
                               λ:B.λc3:C.λ:T.csubc g c1 c3)
                      suppose H5eq C (CHead c0 (Bind Abst) v0) (CHead c1 k v)
                         (H6
                            by (f_equal . . . . . H5)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c0 (Bind Abst) v0 OF CSort c0 | CHead c  c
                                 <λ:C.C> CASE CHead c1 k v OF CSort c0 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c0 | CHead c  c (CHead c0 (Bind Abst) v0)
                                 λe:C.<λ:C.C> CASE e OF CSort c0 | CHead c  c (CHead c1 k v)
                         end of H6
                         (h1
                            (H7
                               by (f_equal . . . . . H5)
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c0 (Bind Abst) v0 OF CSort Bind Abst | CHead  k0 k0
                                    <λ:C.K> CASE CHead c1 k v OF CSort Bind Abst | CHead  k0 k0

                                  eq
                                    K
                                    λe:C.<λ:C.K> CASE e OF CSort Bind Abst | CHead  k0 k0
                                      CHead c0 (Bind Abst) v0
                                    λe:C.<λ:C.K> CASE e OF CSort Bind Abst | CHead  k0 k0 (CHead c1 k v)
                            end of H7
                            (h1
                               (H8
                                  by (f_equal . . . . . H5)
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c0 (Bind Abst) v0 OF CSort v0 | CHead   tt
                                       <λ:C.T> CASE CHead c1 k v OF CSort v0 | CHead   tt

                                     eq
                                       T
                                       λe:C.<λ:C.T> CASE e OF CSort v0 | CHead   tt (CHead c0 (Bind Abst) v0)
                                       λe:C.<λ:C.T> CASE e OF CSort v0 | CHead   tt (CHead c1 k v)
                               end of H8
                                suppose H9eq K (Bind Abst) k
                                suppose H10eq C c0 c1
                                  (H11
                                     consider H8
                                     we proved 
                                        eq
                                          T
                                          <λ:C.T> CASE CHead c0 (Bind Abst) v0 OF CSort v0 | CHead   tt
                                          <λ:C.T> CASE CHead c1 k v OF CSort v0 | CHead   tt
                                     that is equivalent to eq T v0 v
                                     we proceed by induction on the previous result to prove sc3 g (asucc g a) c0 v
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H3
sc3 g (asucc g a) c0 v
                                  end of H11
                                  (H12
                                     we proceed by induction on H10 to prove sc3 g (asucc g a) c1 v
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H11
sc3 g (asucc g a) c1 v
                                  end of H12
                                  (H13
                                     we proceed by induction on H10 to prove 
                                        eq C c1 (CHead c1 k v)
                                          (or3
                                               ex2 C λc3:C.eq C c2 (CHead c3 k v) λc3:C.csubc g c1 c3
                                               ex5_3
                                                 C
                                                 T
                                                 A
                                                 λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                                 λc3:C.λw0:T.λ:A.eq C c2 (CHead c3 (Bind Abbr) w0)
                                                 λc3:C.λ:T.λ:A.csubc g c1 c3
                                                 λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                                 λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                               ex4_3
                                                 B
                                                 C
                                                 T
                                                 λb:B.λc3:C.λv2:T.eq C c2 (CHead c3 (Bind b) v2)
                                                 λ:B.λ:C.λ:T.eq K k (Bind Void)
                                                 λb:B.λ:C.λ:T.not (eq B b Void)
                                                 λ:B.λc3:C.λ:T.csubc g c1 c3)
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H2

                                        eq C c1 (CHead c1 k v)
                                          (or3
                                               ex2 C λc3:C.eq C c2 (CHead c3 k v) λc3:C.csubc g c1 c3
                                               ex5_3
                                                 C
                                                 T
                                                 A
                                                 λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                                 λc3:C.λw0:T.λ:A.eq C c2 (CHead c3 (Bind Abbr) w0)
                                                 λc3:C.λ:T.λ:A.csubc g c1 c3
                                                 λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                                 λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                               ex4_3
                                                 B
                                                 C
                                                 T
                                                 λb:B.λc3:C.λv2:T.eq C c2 (CHead c3 (Bind b) v2)
                                                 λ:B.λ:C.λ:T.eq K k (Bind Void)
                                                 λb:B.λ:C.λ:T.not (eq B b Void)
                                                 λ:B.λc3:C.λ:T.csubc g c1 c3)
                                  end of H13
                                  (H14
                                     we proceed by induction on H10 to prove csubc g c1 c2
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H1
csubc g c1 c2
                                  end of H14
                                  we proceed by induction on H9 to prove 
                                     or3
                                       ex2 C λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 k v) λc3:C.csubc g c1 c3
                                       ex5_3
                                         C
                                         T
                                         A
                                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                         λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                                         λc3:C.λ:T.λ:A.csubc g c1 c3
                                         λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                         λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                       ex4_3
                                         B
                                         C
                                         T
                                         λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                                         λb:B.λ:C.λ:T.not (eq B b Void)
                                         λ:B.λc3:C.λ:T.csubc g c1 c3
                                     case refl_equal : 
                                        the thesis becomes 
                                        or3
                                          ex2
                                            C
                                            λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abst) v)
                                            λc3:C.csubc g c1 c3
                                          ex5_3
                                            C
                                            T
                                            A
                                            λ:C.λ:T.λ:A.eq K (Bind Abst) (Bind Abst)
                                            λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                                            λc3:C.λ:T.λ:A.csubc g c1 c3
                                            λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                            λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                          ex4_3
                                            B
                                            C
                                            T
                                            λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                                            λ:B.λ:C.λ:T.eq K (Bind Abst) (Bind Void)
                                            λb:B.λ:C.λ:T.not (eq B b Void)
                                            λ:B.λc3:C.λ:T.csubc g c1 c3
                                           (h1
                                              by (refl_equal . .)
eq K (Bind Abst) (Bind Abst)
                                           end of h1
                                           (h2
                                              by (refl_equal . .)
eq C (CHead c2 (Bind Abbr) w) (CHead c2 (Bind Abbr) w)
                                           end of h2
                                           by (ex5_3_intro . . . . . . . . . . . h1 h2 H14 H12 H4)
                                           we proved 
                                              ex5_3
                                                C
                                                T
                                                A
                                                λ:C.λ:T.λ:A.eq K (Bind Abst) (Bind Abst)
                                                λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                                                λc3:C.λ:T.λ:A.csubc g c1 c3
                                                λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                                λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                           by (or3_intro1 . . . previous)

                                              or3
                                                ex2
                                                  C
                                                  λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abst) v)
                                                  λc3:C.csubc g c1 c3
                                                ex5_3
                                                  C
                                                  T
                                                  A
                                                  λ:C.λ:T.λ:A.eq K (Bind Abst) (Bind Abst)
                                                  λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                                                  λc3:C.λ:T.λ:A.csubc g c1 c3
                                                  λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                                  λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                                ex4_3
                                                  B
                                                  C
                                                  T
                                                  λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                                                  λ:B.λ:C.λ:T.eq K (Bind Abst) (Bind Void)
                                                  λb:B.λ:C.λ:T.not (eq B b Void)
                                                  λ:B.λc3:C.λ:T.csubc g c1 c3
                                  we proved 
                                     or3
                                       ex2 C λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 k v) λc3:C.csubc g c1 c3
                                       ex5_3
                                         C
                                         T
                                         A
                                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                         λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                                         λc3:C.λ:T.λ:A.csubc g c1 c3
                                         λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                         λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                       ex4_3
                                         B
                                         C
                                         T
                                         λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                                         λb:B.λ:C.λ:T.not (eq B b Void)
                                         λ:B.λc3:C.λ:T.csubc g c1 c3

                                  eq K (Bind Abst) k
                                    (eq C c0 c1
                                         (or3
                                              ex2 C λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 k v) λc3:C.csubc g c1 c3
                                              ex5_3
                                                C
                                                T
                                                A
                                                λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                                λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                                                λc3:C.λ:T.λ:A.csubc g c1 c3
                                                λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                                λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                              ex4_3
                                                B
                                                C
                                                T
                                                λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                                                λ:B.λ:C.λ:T.eq K k (Bind Void)
                                                λb:B.λ:C.λ:T.not (eq B b Void)
                                                λ:B.λc3:C.λ:T.csubc g c1 c3))
                            end of h1
                            (h2
                               consider H7
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c0 (Bind Abst) v0 OF CSort Bind Abst | CHead  k0 k0
                                    <λ:C.K> CASE CHead c1 k v OF CSort Bind Abst | CHead  k0 k0
eq K (Bind Abst) k
                            end of h2
                            by (h1 h2)

                               eq C c0 c1
                                 (or3
                                      ex2 C λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 k v) λc3:C.csubc g c1 c3
                                      ex5_3
                                        C
                                        T
                                        A
                                        λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                        λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                                        λc3:C.λ:T.λ:A.csubc g c1 c3
                                        λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                        λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                                      ex4_3
                                        B
                                        C
                                        T
                                        λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                                        λ:B.λ:C.λ:T.eq K k (Bind Void)
                                        λb:B.λ:C.λ:T.not (eq B b Void)
                                        λ:B.λc3:C.λ:T.csubc g c1 c3)
                         end of h1
                         (h2
                            consider H6
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c0 (Bind Abst) v0 OF CSort c0 | CHead c  c
                                 <λ:C.C> CASE CHead c1 k v OF CSort c0 | CHead c  c
eq C c0 c1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or3
                              ex2 C λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 k v) λc3:C.csubc g c1 c3
                              ex5_3
                                C
                                T
                                A
                                λ:C.λ:T.λ:A.eq K k (Bind Abst)
                                λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                                λc3:C.λ:T.λ:A.csubc g c1 c3
                                λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                                λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                              ex4_3
                                B
                                C
                                T
                                λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                                λ:B.λ:C.λ:T.eq K k (Bind Void)
                                λb:B.λ:C.λ:T.not (eq B b Void)
                                λ:B.λc3:C.λ:T.csubc g c1 c3

                         H5:eq C (CHead c0 (Bind Abst) v0) (CHead c1 k v)
                           .or3
                             ex2 C λc3:C.eq C (CHead c2 (Bind Abbr) w) (CHead c3 k v) λc3:C.csubc g c1 c3
                             ex5_3
                               C
                               T
                               A
                               λ:C.λ:T.λ:A.eq K k (Bind Abst)
                               λc3:C.λw0:T.λ:A.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0)
                               λc3:C.λ:T.λ:A.csubc g c1 c3
                               λ:C.λ:T.λa0:A.sc3 g (asucc g a0) c1 v
                               λc3:C.λw0:T.λa0:A.sc3 g a0 c3 w0
                             ex4_3
                               B
                               C
                               T
                               λb:B.λc3:C.λv2:T.eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2)
                               λ:B.λ:C.λ:T.eq K k (Bind Void)
                               λb:B.λ:C.λ:T.not (eq B b Void)
                               λ:B.λc3:C.λ:T.csubc g c1 c3
             we proved 
                eq C y (CHead c1 k v)
                  (or3
                       ex2 C λc2:C.eq C x (CHead c2 k v) λc2:C.csubc g c1 c2
                       ex5_3
                         C
                         T
                         A
                         λ:C.λ:T.λ:A.eq K k (Bind Abst)
                         λc2:C.λw:T.λ:A.eq C x (CHead c2 (Bind Abbr) w)
                         λc2:C.λ:T.λ:A.csubc g c1 c2
                         λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                         λc2:C.λw:T.λa:A.sc3 g a c2 w
                       ex4_3
                         B
                         C
                         T
                         λb:B.λc2:C.λv2:T.eq C x (CHead c2 (Bind b) v2)
                         λ:B.λ:C.λ:T.eq K k (Bind Void)
                         λb:B.λ:C.λ:T.not (eq B b Void)
                         λ:B.λc2:C.λ:T.csubc g c1 c2)
          we proved 
             y:C
               .csubc g y x
                 (eq C y (CHead c1 k v)
                      (or3
                           ex2 C λc2:C.eq C x (CHead c2 k v) λc2:C.csubc g c1 c2
                           ex5_3
                             C
                             T
                             A
                             λ:C.λ:T.λ:A.eq K k (Bind Abst)
                             λc2:C.λw:T.λ:A.eq C x (CHead c2 (Bind Abbr) w)
                             λc2:C.λ:T.λ:A.csubc g c1 c2
                             λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                             λc2:C.λw:T.λa:A.sc3 g a c2 w
                           ex4_3
                             B
                             C
                             T
                             λb:B.λc2:C.λv2:T.eq C x (CHead c2 (Bind b) v2)
                             λ:B.λ:C.λ:T.eq K k (Bind Void)
                             λb:B.λ:C.λ:T.not (eq B b Void)
                             λ:B.λc2:C.λ:T.csubc g c1 c2))
          by (insert_eq . . . . previous H)
          we proved 
             or3
               ex2 C λc2:C.eq C x (CHead c2 k v) λc2:C.csubc g c1 c2
               ex5_3
                 C
                 T
                 A
                 λ:C.λ:T.λ:A.eq K k (Bind Abst)
                 λc2:C.λw:T.λ:A.eq C x (CHead c2 (Bind Abbr) w)
                 λc2:C.λ:T.λ:A.csubc g c1 c2
                 λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                 λc2:C.λw:T.λa:A.sc3 g a c2 w
               ex4_3
                 B
                 C
                 T
                 λb:B.λc2:C.λv2:T.eq C x (CHead c2 (Bind b) v2)
                 λ:B.λ:C.λ:T.eq K k (Bind Void)
                 λb:B.λ:C.λ:T.not (eq B b Void)
                 λ:B.λc2:C.λ:T.csubc g c1 c2
       we proved 
          g:G
            .c1:C
              .x:C
                .v:T
                  .k:K
                    .csubc g (CHead c1 k v) x
                      (or3
                           ex2 C λc2:C.eq C x (CHead c2 k v) λc2:C.csubc g c1 c2
                           ex5_3
                             C
                             T
                             A
                             λ:C.λ:T.λ:A.eq K k (Bind Abst)
                             λc2:C.λw:T.λ:A.eq C x (CHead c2 (Bind Abbr) w)
                             λc2:C.λ:T.λ:A.csubc g c1 c2
                             λ:C.λ:T.λa:A.sc3 g (asucc g a) c1 v
                             λc2:C.λw:T.λa:A.sc3 g a c2 w
                           ex4_3
                             B
                             C
                             T
                             λb:B.λc2:C.λv2:T.eq C x (CHead c2 (Bind b) v2)
                             λ:B.λ:C.λ:T.eq K k (Bind Void)
                             λb:B.λ:C.λ:T.not (eq B b Void)
                             λ:B.λc2:C.λ:T.csubc g c1 c2)