DEFINITION drop1_csubc_trans()
TYPE =
∀g:G
.∀hds:PList
.∀c2:C.∀e2:C.(drop1 hds c2 e2)→∀e1:C.(csubc g e2 e1)→(ex2 C λc1:C.drop1 hds c1 e1 λc1:C.csubc g c2 c1)
BODY =
assume g: G
assume hds: PList
we proceed by induction on hds to prove ∀c2:C.∀e2:C.(drop1 hds c2 e2)→∀e1:C.(csubc g e2 e1)→(ex2 C λc1:C.drop1 hds c1 e1 λc1:C.csubc g c2 c1)
case PNil : ⇒
the thesis becomes ∀c2:C.∀e2:C.(drop1 PNil c2 e2)→∀e1:C.(csubc g e2 e1)→(ex2 C λc1:C.drop1 PNil c1 e1 λc1:C.csubc g c2 c1)
assume c2: C
assume e2: C
suppose H: drop1 PNil c2 e2
assume e1: C
suppose H0: csubc g e2 e1
(H_y)
by (drop1_gen_pnil . . H)
eq C c2 e2
end of H_y
(H1)
by (eq_ind_r . . . H0 . H_y)
csubc g c2 e1
end of H1
by (drop1_nil .)
we proved drop1 PNil e1 e1
by (ex_intro2 . . . . previous H1)
we proved ex2 C λc1:C.drop1 PNil c1 e1 λc1:C.csubc g c2 c1
∀c2:C.∀e2:C.(drop1 PNil c2 e2)→∀e1:C.(csubc g e2 e1)→(ex2 C λc1:C.drop1 PNil c1 e1 λc1:C.csubc g c2 c1)
case PCons : n:nat n0:nat p:PList ⇒
the thesis becomes ∀c2:C.∀e2:C.∀H0:(drop1 (PCons n n0 p) c2 e2).∀e1:C.∀H1:(csubc g e2 e1).(ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1)
(H) by induction hypothesis we know ∀c2:C.∀e2:C.(drop1 p c2 e2)→∀e1:C.(csubc g e2 e1)→(ex2 C λc1:C.drop1 p c1 e1 λc1:C.csubc g c2 c1)
assume c2: C
assume e2: C
suppose H0: drop1 (PCons n n0 p) c2 e2
assume e1: C
suppose H1: csubc g e2 e1
(H_x)
by (drop1_gen_pcons . . . . . H0)
ex2 C λc2:C.drop n n0 c2 c2 λc2:C.drop1 p c2 e2
end of H_x
(H2) consider H_x
we proceed by induction on H2 to prove ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
case ex_intro2 : x:C H3:drop n n0 c2 x H4:drop1 p x e2 ⇒
the thesis becomes ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
(H_x0)
by (H . . H4 . H1)
ex2 C λc1:C.drop1 p c1 e1 λc1:C.csubc g x c1
end of H_x0
(H5) consider H_x0
we proceed by induction on H5 to prove ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
case ex_intro2 : x0:C H6:drop1 p x0 e1 H7:csubc g x x0 ⇒
the thesis becomes ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
(H_x1)
by (drop_csubc_trans . . . . . H3 . H7)
ex2 C λc1:C.drop n n0 c1 x0 λc1:C.csubc g c2 c1
end of H_x1
(H8) consider H_x1
we proceed by induction on H8 to prove ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
case ex_intro2 : x1:C H9:drop n n0 x1 x0 H10:csubc g c2 x1 ⇒
the thesis becomes ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
by (drop1_cons . . . . H9 . . H6)
we proved drop1 (PCons n n0 p) x1 e1
by (ex_intro2 . . . . previous H10)
ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
we proved ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1
∀c2:C.∀e2:C.∀H0:(drop1 (PCons n n0 p) c2 e2).∀e1:C.∀H1:(csubc g e2 e1).(ex2 C λc1:C.drop1 (PCons n n0 p) c1 e1 λc1:C.csubc g c2 c1)
we proved ∀c2:C.∀e2:C.(drop1 hds c2 e2)→∀e1:C.(csubc g e2 e1)→(ex2 C λc1:C.drop1 hds c1 e1 λc1:C.csubc g c2 c1)
we proved
∀g:G
.∀hds:PList
.∀c2:C.∀e2:C.(drop1 hds c2 e2)→∀e1:C.(csubc g e2 e1)→(ex2 C λc1:C.drop1 hds c1 e1 λc1:C.csubc g c2 c1)