DEFINITION csuba_refl()
TYPE =
∀g:G.∀c:C.(csuba g c c)
BODY =
assume g: G
assume c: C
we proceed by induction on c to prove csuba g c c
case CSort : n:nat ⇒
the thesis becomes csuba g (CSort n) (CSort n)
by (csuba_sort . .)
csuba g (CSort n) (CSort n)
case CHead : c0:C k:K t:T ⇒
the thesis becomes csuba g (CHead c0 k t) (CHead c0 k t)
(H) by induction hypothesis we know csuba g c0 c0
by (csuba_head . . . H . .)
csuba g (CHead c0 k t) (CHead c0 k t)
we proved csuba g c c
we proved ∀g:G.∀c:C.(csuba g c c)