DEFINITION csuba_ind()
TYPE =
       g:G
         .P:CCProp
           .n:nat.(P (CSort n) (CSort n))
             (c:C
                    .c1:C.(csuba g c c1)(P c c1)k:K.t:T.(P (CHead c k t) (CHead c1 k t))
                  (c:C
                         .c1:C
                           .csuba g c c1
                             (P c c1
                                  b:B
                                       .not (eq B b Void)
                                         t:T.t1:T.(P (CHead c (Bind Void) t) (CHead c1 (Bind b) t1)))
                       (c:C
                              .c1:C
                                .csuba g c c1
                                  (P c c1
                                       t:T
                                            .a:A
                                              .arity g c t (asucc g a)
                                                t1:T
                                                     .arity g c1 t1 a
                                                       P (CHead c (Bind Abst) t) (CHead c1 (Bind Abbr) t1))
                            c:C.c1:C.(csuba g c c1)(P c c1))))
BODY =
        assume gG
        assume PCCProp
        suppose Hn:nat.(P (CSort n) (CSort n))
        suppose H1
           c:C
             .c1:C.(csuba g c c1)(P c c1)k:K.t:T.(P (CHead c k t) (CHead c1 k t))
        suppose H2
           c:C
             .c1:C
               .csuba g c c1
                 (P c c1
                      b:B
                           .not (eq B b Void)
                             t:T.t1:T.(P (CHead c (Bind Void) t) (CHead c1 (Bind b) t1)))
        suppose H3
           c:C
             .c1:C
               .csuba g c c1
                 (P c c1
                      t:T
                           .a:A
                             .arity g c t (asucc g a)
                               t1:T
                                    .arity g c1 t1 a
                                      P (CHead c (Bind Abst) t) (CHead c1 (Bind Abbr) t1))
          (aux) by well-founded reasoning we prove c:C.c1:C.(csuba g c c1)(P c c1)
           assume cC
           assume c1C
           suppose H4csuba g c c1
             by cases on H4 we prove P c c1
                case csuba_sort n:nat 
                   the thesis becomes P (CSort n) (CSort n)
                   by (H .)
P (CSort n) (CSort n)
                case csuba_head c2:C c3:C H5:csuba g c2 c3 k:K t:T 
                   the thesis becomes P (CHead c2 k t) (CHead c3 k t)
                   by (aux . . H5)
                   we proved P c2 c3
                   by (H1 . . H5 previous . .)
P (CHead c2 k t) (CHead c3 k t)
                case csuba_void c2:C c3:C H5:csuba g c2 c3 b:B H6:not (eq B b Void) t:T t1:T 
                   the thesis becomes P (CHead c2 (Bind Void) t) (CHead c3 (Bind b) t1)
                   by (aux . . H5)
                   we proved P c2 c3
                   by (H2 . . H5 previous . H6 . .)
P (CHead c2 (Bind Void) t) (CHead c3 (Bind b) t1)
                case csuba_abst c2:C c3:C H5:csuba g c2 c3 t:T a:A H6:arity g c2 t (asucc g a) t1:T H7:arity g c3 t1 a 
                   the thesis becomes P (CHead c2 (Bind Abst) t) (CHead c3 (Bind Abbr) t1)
                   by (aux . . H5)
                   we proved P c2 c3
                   by (H3 . . H5 previous . . H6 . H7)
P (CHead c2 (Bind Abst) t) (CHead c3 (Bind Abbr) t1)
             we proved P c c1
c:C.c1:C.(csuba g c c1)(P c c1)
          done
          consider aux
          we proved c:C.c1:C.(csuba g c c1)(P c c1)
       we proved 
          g:G
            .P:CCProp
              .n:nat.(P (CSort n) (CSort n))
                (c:C
                       .c1:C.(csuba g c c1)(P c c1)k:K.t:T.(P (CHead c k t) (CHead c1 k t))
                     (c:C
                            .c1:C
                              .csuba g c c1
                                (P c c1
                                     b:B
                                          .not (eq B b Void)
                                            t:T.t1:T.(P (CHead c (Bind Void) t) (CHead c1 (Bind b) t1)))
                          (c:C
                                 .c1:C
                                   .csuba g c c1
                                     (P c c1
                                          t:T
                                               .a:A
                                                 .arity g c t (asucc g a)
                                                   t1:T
                                                        .arity g c1 t1 a
                                                          P (CHead c (Bind Abst) t) (CHead c1 (Bind Abbr) t1))
                               c:C.c1:C.(csuba g c c1)(P c c1))))