DEFINITION cnt_ind()
TYPE =
       P:TProp
         .n:nat.(P (TSort n))
           (t:T.(cnt t)(P t)k:K.t1:T.(P (THead k t1 t))
                t:T.(cnt t)(P t))
BODY =
        assume PTProp
        suppose Hn:nat.(P (TSort n))
        suppose H1t:T.(cnt t)(P t)k:K.t1:T.(P (THead k t1 t))
          (aux) by well-founded reasoning we prove t:T.(cnt t)(P t)
           assume tT
           suppose H2cnt t
             by cases on H2 we prove P t
                case cnt_sort n:nat 
                   the thesis becomes P (TSort n)
                   by (H .)
P (TSort n)
                case cnt_head t1:T H3:cnt t1 k:K t2:T 
                   the thesis becomes P (THead k t2 t1)
                   by (aux . H3)
                   we proved P t1
                   by (H1 . H3 previous . .)
P (THead k t2 t1)
             we proved P t
t:T.(cnt t)(P t)
          done
          consider aux
          we proved t:T.(cnt t)(P t)
       we proved 
          P:TProp
            .n:nat.(P (TSort n))
              (t:T.(cnt t)(P t)k:K.t1:T.(P (THead k t1 t))
                   t:T.(cnt t)(P t))