DEFINITION cnt_ind()
TYPE =
∀P:T→Prop
.∀n:nat.(P (TSort n))
→(∀t:T.(cnt t)→(P t)→∀k:K.∀t1:T.(P (THead k t1 t))
→∀t:T.(cnt t)→(P t))
BODY =
assume P: T→Prop
suppose H: ∀n:nat.(P (TSort n))
suppose H1: ∀t:T.(cnt t)→(P t)→∀k:K.∀t1:T.(P (THead k t1 t))
(aux) by well-founded reasoning we prove ∀t:T.(cnt t)→(P t)
assume t: T
suppose H2: cnt t
by cases on H2 we prove P t
case cnt_sort n:nat ⇒
the thesis becomes P (TSort n)
by (H .)
P (TSort n)
case cnt_head t1:T H3:cnt t1 k:K t2:T ⇒
the thesis becomes P (THead k t2 t1)
by (aux . H3)
we proved P t1
by (H1 . H3 previous . .)
P (THead k t2 t1)
we proved P t
∀t:T.(cnt t)→(P t)
done
consider aux
we proved ∀t:T.(cnt t)→(P t)
we proved
∀P:T→Prop
.∀n:nat.(P (TSort n))
→(∀t:T.(cnt t)→(P t)→∀k:K.∀t1:T.(P (THead k t1 t))
→∀t:T.(cnt t)→(P t))