DEFINITION clear_gen_flat_r()
TYPE =
∀f:F.∀x:C.∀e:C.∀u:T.(clear x (CHead e (Flat f) u))→∀P:Prop.P
BODY =
assume f: F
assume x: C
assume e: C
assume u: T
suppose H: clear x (CHead e (Flat f) u)
assume P: Prop
assume y: C
suppose H0: clear x y
we proceed by induction on H0 to prove (eq C y (CHead e (Flat f) u))→P
case clear_bind : b:B e0:C u0:T ⇒
the thesis becomes ∀H1:(eq C (CHead e0 (Bind b) u0) (CHead e (Flat f) u)).P
suppose H1: eq C (CHead e0 (Bind b) u0) (CHead e (Flat f) u)
(H2)
we proceed by induction on H1 to prove
<λ:C.Prop>
CASE CHead e (Flat f) u OF
CSort ⇒False
| CHead k ⇒<λ:K.Prop> CASE k OF Bind ⇒True | Flat ⇒False
case refl_equal : ⇒
the thesis becomes
<λ:C.Prop>
CASE CHead e0 (Bind b) u0 OF
CSort ⇒False
| CHead k ⇒<λ:K.Prop> CASE k OF Bind ⇒True | Flat ⇒False
consider I
we proved True
<λ:C.Prop>
CASE CHead e0 (Bind b) u0 OF
CSort ⇒False
| CHead k ⇒<λ:K.Prop> CASE k OF Bind ⇒True | Flat ⇒False
<λ:C.Prop>
CASE CHead e (Flat f) u OF
CSort ⇒False
| CHead k ⇒<λ:K.Prop> CASE k OF Bind ⇒True | Flat ⇒False
end of H2
consider H2
we proved
<λ:C.Prop>
CASE CHead e (Flat f) u OF
CSort ⇒False
| CHead k ⇒<λ:K.Prop> CASE k OF Bind ⇒True | Flat ⇒False
that is equivalent to False
we proceed by induction on the previous result to prove P
we proved P
∀H1:(eq C (CHead e0 (Bind b) u0) (CHead e (Flat f) u)).P
case clear_flat : e0:C c:C H1:clear e0 c :F :T ⇒
the thesis becomes ∀H3:(eq C c (CHead e (Flat f) u)).P
(H2) by induction hypothesis we know (eq C c (CHead e (Flat f) u))→P
suppose H3: eq C c (CHead e (Flat f) u)
(H4)
we proceed by induction on H3 to prove (eq C (CHead e (Flat f) u) (CHead e (Flat f) u))→P
case refl_equal : ⇒
the thesis becomes the hypothesis H2
(eq C (CHead e (Flat f) u) (CHead e (Flat f) u))→P
end of H4
by (refl_equal . .)
we proved eq C (CHead e (Flat f) u) (CHead e (Flat f) u)
by (H4 previous)
we proved P
∀H3:(eq C c (CHead e (Flat f) u)).P
we proved (eq C y (CHead e (Flat f) u))→P
we proved ∀y:C.(clear x y)→(eq C y (CHead e (Flat f) u))→P
by (insert_eq . . . . previous H)
we proved P
we proved ∀f:F.∀x:C.∀e:C.∀u:T.(clear x (CHead e (Flat f) u))→∀P:Prop.P