DEFINITION clear_gen_flat()
TYPE =
       f:F.e:C.x:C.u:T.(clear (CHead e (Flat f) u) x)(clear e x)
BODY =
        assume fF
        assume eC
        assume xC
        assume uT
        suppose Hclear (CHead e (Flat f) u) x
           assume yC
           suppose H0clear y x
             we proceed by induction on H0 to prove (eq C y (CHead e (Flat f) u))(clear e x)
                case clear_bind : b:B e0:C u0:T 
                   the thesis becomes 
                   H1:eq C (CHead e0 (Bind b) u0) (CHead e (Flat f) u)
                     .clear e (CHead e0 (Bind b) u0)
                      suppose H1eq C (CHead e0 (Bind b) u0) (CHead e (Flat f) u)
                         (H2
                            we proceed by induction on H1 to prove 
                               <λ:C.Prop>
                                 CASE CHead e (Flat f) u OF
                                   CSort False
                                 | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:C.Prop>
                                    CASE CHead e0 (Bind b) u0 OF
                                      CSort False
                                    | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                                     consider I
                                     we proved True

                                        <λ:C.Prop>
                                          CASE CHead e0 (Bind b) u0 OF
                                            CSort False
                                          | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False

                               <λ:C.Prop>
                                 CASE CHead e (Flat f) u OF
                                   CSort False
                                 | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                         end of H2
                         consider H2
                         we proved 
                            <λ:C.Prop>
                              CASE CHead e (Flat f) u OF
                                CSort False
                              | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove clear e (CHead e0 (Bind b) u0)
                         we proved clear e (CHead e0 (Bind b) u0)

                         H1:eq C (CHead e0 (Bind b) u0) (CHead e (Flat f) u)
                           .clear e (CHead e0 (Bind b) u0)
                case clear_flat : e0:C c:C H1:clear e0 c f0:F u0:T 
                   the thesis becomes H3:(eq C (CHead e0 (Flat f0) u0) (CHead e (Flat f) u)).(clear e c)
                   (H2) by induction hypothesis we know (eq C e0 (CHead e (Flat f) u))(clear e c)
                      suppose H3eq C (CHead e0 (Flat f0) u0) (CHead e (Flat f) u)
                         (H4
                            by (f_equal . . . . . H3)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead e0 (Flat f0) u0 OF CSort e0 | CHead c0  c0
                                 <λ:C.C> CASE CHead e (Flat f) u OF CSort e0 | CHead c0  c0

                               eq
                                 C
                                 λe1:C.<λ:C.C> CASE e1 OF CSort e0 | CHead c0  c0 (CHead e0 (Flat f0) u0)
                                 λe1:C.<λ:C.C> CASE e1 OF CSort e0 | CHead c0  c0 (CHead e (Flat f) u)
                         end of H4
                         (h1
                            (H5
                               by (f_equal . . . . . H3)
                               we proved 
                                  eq
                                    F
                                    <λ:C.F>
                                      CASE CHead e0 (Flat f0) u0 OF
                                        CSort f0
                                      | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
                                    <λ:C.F>
                                      CASE CHead e (Flat f) u OF
                                        CSort f0
                                      | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1

                                  eq
                                    F
                                    λe1:C.<λ:C.F> CASE e1 OF CSort f0 | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
                                      CHead e0 (Flat f0) u0
                                    λe1:C.<λ:C.F> CASE e1 OF CSort f0 | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
                                      CHead e (Flat f) u
                            end of H5
                            (
                               consider H5
                               we proved 
                                  eq
                                    F
                                    <λ:C.F>
                                      CASE CHead e0 (Flat f0) u0 OF
                                        CSort f0
                                      | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
                                    <λ:C.F>
                                      CASE CHead e (Flat f) u OF
                                        CSort f0
                                      | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
eq F f0 f
                            end of 
                            suppose H8eq C e0 e
                               (H10
                                  we proceed by induction on H8 to prove clear e c
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H1
clear e c
                               end of H10
                               consider H10
                               we proved clear e c
(eq C e0 e)(clear e c)
                         end of h1
                         (h2
                            consider H4
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead e0 (Flat f0) u0 OF CSort e0 | CHead c0  c0
                                 <λ:C.C> CASE CHead e (Flat f) u OF CSort e0 | CHead c0  c0
eq C e0 e
                         end of h2
                         by (h1 h2)
                         we proved clear e c
H3:(eq C (CHead e0 (Flat f0) u0) (CHead e (Flat f) u)).(clear e c)
             we proved (eq C y (CHead e (Flat f) u))(clear e x)
          we proved 
             y:C
               .(clear y x)(eq C y (CHead e (Flat f) u))(clear e x)
          by (insert_eq . . . . previous H)
          we proved clear e x
       we proved f:F.e:C.x:C.u:T.(clear (CHead e (Flat f) u) x)(clear e x)