DEFINITION clear_ind()
TYPE =
       P:CCProp
         .b:B.c:C.t:T.(P (CHead c (Bind b) t) (CHead c (Bind b) t))
           (c:C.c1:C.(clear c c1)(P c c1)f:F.t:T.(P (CHead c (Flat f) t) c1)
                c:C.c1:C.(clear c c1)(P c c1))
BODY =
        assume PCCProp
        suppose Hb:B.c:C.t:T.(P (CHead c (Bind b) t) (CHead c (Bind b) t))
        suppose H1c:C.c1:C.(clear c c1)(P c c1)f:F.t:T.(P (CHead c (Flat f) t) c1)
          (aux) by well-founded reasoning we prove c:C.c1:C.(clear c c1)(P c c1)
           assume cC
           assume c1C
           suppose H2clear c c1
             by cases on H2 we prove P c c1
                case clear_bind b:B c2:C t:T 
                   the thesis becomes P (CHead c2 (Bind b) t) (CHead c2 (Bind b) t)
                   by (H . . .)
P (CHead c2 (Bind b) t) (CHead c2 (Bind b) t)
                case clear_flat c2:C c3:C H3:clear c2 c3 f:F t:T 
                   the thesis becomes P (CHead c2 (Flat f) t) c3
                   by (aux . . H3)
                   we proved P c2 c3
                   by (H1 . . H3 previous . .)
P (CHead c2 (Flat f) t) c3
             we proved P c c1
c:C.c1:C.(clear c c1)(P c c1)
          done
          consider aux
          we proved c:C.c1:C.(clear c c1)(P c c1)
       we proved 
          P:CCProp
            .b:B.c:C.t:T.(P (CHead c (Bind b) t) (CHead c (Bind b) t))
              (c:C.c1:C.(clear c c1)(P c c1)f:F.t:T.(P (CHead c (Flat f) t) c1)
                   c:C.c1:C.(clear c c1)(P c c1))