DEFINITION arity_subst0()
TYPE =
∀g:G
.∀c:C
.∀t1:T
.∀a:A
.arity g c t1 a
→∀d:C
.∀u:T
.∀i:nat
.getl i c (CHead d (Bind Abbr) u)
→∀t2:T.(subst0 i u t1 t2)→(arity g c t2 a)
BODY =
assume g: G
assume c: C
assume t1: T
assume a: A
suppose H: arity g c t1 a
assume d: C
assume u: T
assume i: nat
suppose H0: getl i c (CHead d (Bind Abbr) u)
assume t2: T
suppose H1: subst0 i u t1 t2
by (fsubst0_snd . . . . . H1)
we proved fsubst0 i u c t1 c t2
by (arity_fsubst0 . . . . H . . . H0 . . previous)
we proved arity g c t2 a
we proved
∀g:G
.∀c:C
.∀t1:T
.∀a:A
.arity g c t1 a
→∀d:C
.∀u:T
.∀i:nat
.getl i c (CHead d (Bind Abbr) u)
→∀t2:T.(subst0 i u t1 t2)→(arity g c t2 a)