DEFINITION node_inh()
TYPE =
∀g:G.∀n:nat.∀k:nat.(ex_2 C T λc:C.λt:T.arity g c t (ASort k n))
BODY =
assume g: G
assume n: nat
assume k: nat
we proceed by induction on k to prove ex_2 C T λc:C.λt:T.arity g c t (ASort k n)
case O : ⇒
the thesis becomes ex_2 C T λc:C.λt:T.arity g c t (ASort O n)
by (arity_sort . . .)
we proved arity g (CSort O) (TSort n) (ASort O n)
by (ex_2_intro . . . . . previous)
ex_2 C T λc:C.λt:T.arity g c t (ASort O n)
case S : n0:nat ⇒
the thesis becomes ex_2 C T λc:C.λt:T.arity g c t (ASort (S n0) n)
(H) by induction hypothesis we know ex_2 C T λc:C.λt:T.arity g c t (ASort n0 n)
(H0) consider H
we proceed by induction on H0 to prove ex_2 C T λc:C.λt:T.arity g c t (ASort (S n0) n)
case ex_2_intro : x0:C x1:T H1:arity g x0 x1 (ASort n0 n) ⇒
the thesis becomes ex_2 C T λc:C.λt:T.arity g c t (ASort (S n0) n)
(h1)
by (getl_refl . . .)
getl O (CHead x0 (Bind Abst) x1) (CHead x0 (Bind Abst) x1)
end of h1
(h2)
consider H1
we proved arity g x0 x1 (ASort n0 n)
arity g x0 x1 (asucc g (ASort (S n0) n))
end of h2
by (arity_abst . . . . . h1 . h2)
we proved arity g (CHead x0 (Bind Abst) x1) (TLRef O) (ASort (S n0) n)
by (ex_2_intro . . . . . previous)
ex_2 C T λc:C.λt:T.arity g c t (ASort (S n0) n)
ex_2 C T λc:C.λt:T.arity g c t (ASort (S n0) n)
we proved ex_2 C T λc:C.λt:T.arity g c t (ASort k n)
we proved ∀g:G.∀n:nat.∀k:nat.(ex_2 C T λc:C.λt:T.arity g c t (ASort k n))