DEFINITION arity_repellent()
TYPE =
∀g:G
.∀c:C
.∀w:T
.∀t:T
.∀a1:A
.arity g (CHead c (Bind Abst) w) t a1
→∀a2:A.(arity g c (THead (Bind Abst) w t) a2)→(leq g a1 a2)→∀P:Prop.P
BODY =
assume g: G
assume c: C
assume w: T
assume t: T
assume a1: A
suppose H: arity g (CHead c (Bind Abst) w) t a1
assume a2: A
suppose H0: arity g c (THead (Bind Abst) w t) a2
suppose H1: leq g a1 a2
assume P: Prop
(H_y)
by (arity_repl . . . . H . H1)
arity g (CHead c (Bind Abst) w) t a2
end of H_y
(H2)
by (arity_gen_abst . . . . . H0)
ex3_2
A
A
λa1:A.λa2:A.eq A a2 (AHead a1 a2)
λa1:A.λ:A.arity g c w (asucc g a1)
λ:A.λa2:A.arity g (CHead c (Bind Abst) w) t a2
end of H2
we proceed by induction on H2 to prove P
case ex3_2_intro : x0:A x1:A H3:eq A a2 (AHead x0 x1) :arity g c w (asucc g x0) H5:arity g (CHead c (Bind Abst) w) t x1 ⇒
the thesis becomes P
(H6)
we proceed by induction on H3 to prove arity g (CHead c (Bind Abst) w) t (AHead x0 x1)
case refl_equal : ⇒
the thesis becomes the hypothesis H_y
arity g (CHead c (Bind Abst) w) t (AHead x0 x1)
end of H6
by (arity_mono . . . . H6 . H5)
we proved leq g (AHead x0 x1) x1
by (leq_ahead_false_2 . . . previous .)
P
we proved P
we proved
∀g:G
.∀c:C
.∀w:T
.∀t:T
.∀a1:A
.arity g (CHead c (Bind Abst) w) t a1
→∀a2:A.(arity g c (THead (Bind Abst) w t) a2)→(leq g a1 a2)→∀P:Prop.P