DEFINITION arity_sred_wcpr0_pr1()
TYPE =
∀t1:T.∀t2:T.(pr1 t1 t2)→∀g:G.∀c1:C.∀a:A.(arity g c1 t1 a)→∀c2:C.(wcpr0 c1 c2)→(arity g c2 t2 a)
BODY =
assume t1: T
assume t2: T
suppose H: pr1 t1 t2
we proceed by induction on H to prove ∀g:G.∀c1:C.∀a:A.(arity g c1 t1 a)→∀c2:C.(wcpr0 c1 c2)→(arity g c2 t2 a)
case pr1_refl : t:T ⇒
the thesis becomes ∀g:G.∀c1:C.∀a:A.∀H0:(arity g c1 t a).∀c2:C.∀H1:(wcpr0 c1 c2).(arity g c2 t a)
assume g: G
assume c1: C
assume a: A
suppose H0: arity g c1 t a
assume c2: C
suppose H1: wcpr0 c1 c2
by (pr0_refl .)
we proved pr0 t t
by (arity_sred_wcpr0_pr0 . . . . H0 . H1 . previous)
we proved arity g c2 t a
∀g:G.∀c1:C.∀a:A.∀H0:(arity g c1 t a).∀c2:C.∀H1:(wcpr0 c1 c2).(arity g c2 t a)
case pr1_sing : t3:T t4:T H0:pr0 t4 t3 t5:T :pr1 t3 t5 ⇒
the thesis becomes ∀g:G.∀c1:C.∀a:A.∀H3:(arity g c1 t4 a).∀c2:C.∀H4:(wcpr0 c1 c2).(arity g c2 t5 a)
(H2) by induction hypothesis we know ∀g:G.∀c1:C.∀a:A.(arity g c1 t3 a)→∀c2:C.(wcpr0 c1 c2)→(arity g c2 t5 a)
assume g: G
assume c1: C
assume a: A
suppose H3: arity g c1 t4 a
assume c2: C
suppose H4: wcpr0 c1 c2
(h1)
by (arity_sred_wcpr0_pr0 . . . . H3 . H4 . H0)
arity g c2 t3 a
end of h1
(h2) by (wcpr0_refl .) we proved wcpr0 c2 c2
by (H2 . . . h1 . h2)
we proved arity g c2 t5 a
∀g:G.∀c1:C.∀a:A.∀H3:(arity g c1 t4 a).∀c2:C.∀H4:(wcpr0 c1 c2).(arity g c2 t5 a)
we proved ∀g:G.∀c1:C.∀a:A.(arity g c1 t1 a)→∀c2:C.(wcpr0 c1 c2)→(arity g c2 t2 a)
we proved ∀t1:T.∀t2:T.(pr1 t1 t2)→∀g:G.∀c1:C.∀a:A.(arity g c1 t1 a)→∀c2:C.(wcpr0 c1 c2)→(arity g c2 t2 a)