DEFINITION not_abbr_void()
TYPE =
not (eq B Abbr Void)
BODY =
we must prove not (eq B Abbr Void)
or equivalently (eq B Abbr Void)→False
suppose H: eq B Abbr Void
(H0)
we proceed by induction on H to prove <λ:B.Prop> CASE Void OF Abbr⇒True | Abst⇒False | Void⇒False
case refl_equal : ⇒
the thesis becomes <λ:B.Prop> CASE Abbr OF Abbr⇒True | Abst⇒False | Void⇒False
consider I
we proved True
<λ:B.Prop> CASE Abbr OF Abbr⇒True | Abst⇒False | Void⇒False
<λ:B.Prop> CASE Void OF Abbr⇒True | Abst⇒False | Void⇒False
end of H0
consider H0
we proved <λ:B.Prop> CASE Void OF Abbr⇒True | Abst⇒False | Void⇒False
that is equivalent to False
we proceed by induction on the previous result to prove False
we proved False
we proved (eq B Abbr Void)→False
that is equivalent to not (eq B Abbr Void)