DEFINITION T_ind()
TYPE =
∀P:T→Prop
.∀n:nat.(P (TSort n))
→(∀n:nat.(P (TLRef n))
→(∀k:K.∀t:T.(P t)→∀t1:T.(P t1)→(P (THead k t t1)))→∀t:T.(P t))
BODY =
assume P: T→Prop
suppose H: ∀n:nat.(P (TSort n))
suppose H1: ∀n:nat.(P (TLRef n))
suppose H2: ∀k:K.∀t:T.(P t)→∀t1:T.(P t1)→(P (THead k t t1))
(aux) by well-founded reasoning we prove ∀t:T.(P t)
assume t: T
by cases on t we prove P t
case TSort n:nat ⇒
the thesis becomes P (TSort n)
by (H .)
P (TSort n)
case TLRef n:nat ⇒
the thesis becomes P (TLRef n)
by (H1 .)
P (TLRef n)
case THead k:K t1:T t2:T ⇒
the thesis becomes P (THead k t1 t2)
(h1) by (aux .) we proved P t1
(h2) by (aux .) we proved P t2
by (H2 . . h1 . h2)
P (THead k t1 t2)
we proved P t
∀t:T.(P t)
done
consider aux
we proved ∀t:T.(P t)
we proved
∀P:T→Prop
.∀n:nat.(P (TSort n))
→(∀n:nat.(P (TLRef n))
→(∀k:K.∀t:T.(P t)→∀t1:T.(P t1)→(P (THead k t t1)))→∀t:T.(P t))