DEFINITION T_ind()
TYPE =
       P:TProp
         .n:nat.(P (TSort n))
           (n:nat.(P (TLRef n))
                (k:K.t:T.(P t)t1:T.(P t1)(P (THead k t t1)))t:T.(P t))
BODY =
        assume PTProp
        suppose Hn:nat.(P (TSort n))
        suppose H1n:nat.(P (TLRef n))
        suppose H2k:K.t:T.(P t)t1:T.(P t1)(P (THead k t t1))
          (aux) by well-founded reasoning we prove t:T.(P t)
          assume tT
             by cases on t we prove P t
                case TSort n:nat 
                   the thesis becomes P (TSort n)
                   by (H .)
P (TSort n)
                case TLRef n:nat 
                   the thesis becomes P (TLRef n)
                   by (H1 .)
P (TLRef n)
                case THead k:K t1:T t2:T 
                   the thesis becomes P (THead k t1 t2)
                   (h1by (aux .) we proved P t1
                   (h2by (aux .) we proved P t2
                   by (H2 . . h1 . h2)
P (THead k t1 t2)
             we proved P t
t:T.(P t)
          done
          consider aux
          we proved t:T.(P t)
       we proved 
          P:TProp
            .n:nat.(P (TSort n))
              (n:nat.(P (TLRef n))
                   (k:K.t:T.(P t)t1:T.(P t1)(P (THead k t t1)))t:T.(P t))