DEFINITION bind_dec_not()
TYPE =
∀b1:B.∀b2:B.(or (eq B b1 b2) (not (eq B b1 b2)))
BODY =
assume b1: B
assume b2: B
(H_x)
by (terms_props__bind_dec . .)
or (eq B b1 b2) (eq B b1 b2)→∀P:Prop.P
end of H_x
(H) consider H_x
we proceed by induction on H to prove or (eq B b1 b2) (eq B b1 b2)→False
case or_introl : H0:eq B b1 b2 ⇒
the thesis becomes or (eq B b1 b2) (eq B b1 b2)→False
by (or_introl . . H0)
or (eq B b1 b2) (eq B b1 b2)→False
case or_intror : H0:(eq B b1 b2)→∀P:Prop.P ⇒
the thesis becomes or (eq B b1 b2) (eq B b1 b2)→False
suppose H1: eq B b1 b2
by (H0 H1 .)
we proved False
we proved (eq B b1 b2)→False
by (or_intror . . previous)
or (eq B b1 b2) (eq B b1 b2)→False
we proved or (eq B b1 b2) (eq B b1 b2)→False
that is equivalent to or (eq B b1 b2) (not (eq B b1 b2))
we proved ∀b1:B.∀b2:B.(or (eq B b1 b2) (not (eq B b1 b2)))