DEFINITION G_ind()
TYPE =
∀P:G→Prop
.(∀f:nat→nat.∀H:∀n:nat.(lt n (f n)).(P (mk_G f H)))→∀g:G.(P g)
BODY =
assume P: G→Prop
suppose H: ∀f:nat→nat.∀H:∀n:nat.(lt n (f n)).(P (mk_G f H))
assume g: G
by cases on g we prove P g
case mk_G f:nat→nat H1:∀n:nat.(lt n (f n)) ⇒
the thesis becomes P (mk_G f H1)
by (H . H1)
P (mk_G f H1)
we proved P g
we proved
∀P:G→Prop
.(∀f:nat→nat.∀H:∀n:nat.(lt n (f n)).(P (mk_G f H)))→∀g:G.(P g)