DEFINITION clt_wf_ind()
TYPE =
       P:CProp.(c:C.(d:C.(clt d c)(P d))(P c))c:C.(P c)
BODY =
       (Q
           assume PCProp
           assume nnat
              assume cC
              suppose eq nat (cweight c) n
                by (. .)
                we proved 
             suppose eq nat (cweight c) n
                by (. .)
                we proved 
             by (. .)
             we proved 

       end of Q
        assume PCProp
        suppose Hc:C.(d:C.(lt (cweight d) (cweight c))(P d))(P c)
        assume cC
          assume nnat
              assume n0nat
              suppose H0m:nat.(lt m n0)(Q λc0:C.P c0 m)
                we must prove λc0:C.P c0 n0
                or equivalently c0:C.(eq nat (cweight c0) n0)(P c0)
                 assume c0C
                 suppose H1eq nat (cweight c0) n0
                   (H2
                      consider H0
                      we proved m:nat.(lt m n0)(Q λc0:C.P c0 m)
                      that is equivalent to m:nat.(lt m n0)c1:C.(eq nat (cweight c1) m)(P c1)
                      by (eq_ind_r . . . previous . H1)
m:nat.(lt m (cweight c0))c1:C.(eq nat (cweight c1) m)(P c1)
                   end of H2
                    assume dC
                    suppose H3lt (cweight d) (cweight c0)
                      by (refl_equal . .)
                      we proved eq nat (cweight d) (cweight d)
                      by (H2 . H3 . previous)
                      we proved P d
                   we proved d:C.(lt (cweight d) (cweight c0))(P d)
                   by (H . previous)
                   we proved P c0
                we proved c0:C.(eq nat (cweight c0) n0)(P c0)
                that is equivalent to λc0:C.P c0 n0
             we proved n0:nat.(m:nat.(lt m n0)(Q λc0:C.P c0 m))(Q λc0:C.P c0 n0)
             by (lt_wf_ind . . previous)
             we proved λc0:C.P c0 n
             that is equivalent to c:C.(eq nat (cweight c) n)(P c)
          we proved n:nat.c:C.(eq nat (cweight c) n)(P c)
          by (clt_wf__q_ind . previous .)
          we proved P c
       we proved 
          P:CProp
            .c:C.(d:C.(lt (cweight d) (cweight c))(P d))(P c)
              c:C.(P c)
       that is equivalent to 
          P:CProp.(c:C.(d:C.(clt d c)(P d))(P c))c:C.(P c)