DEFINITION c_tail_ind()
TYPE =
       P:CProp
         .n:nat.(P (CSort n))
           (c:C.(P c)k:K.t:T.(P (CTail k t c)))c:C.(P c)
BODY =
        assume PCProp
        suppose Hn:nat.(P (CSort n))
        suppose H0c:C.(P c)k:K.t:T.(P (CTail k t c))
        assume cC
          assume c0C
             we proceed by induction on c0 to prove (d:C.(clt d c0)(P d))(P c0)
                case CSort : n:nat 
                   the thesis becomes (d:C.(clt d (CSort n))(P d))(P (CSort n))
                      suppose d:C.(clt d (CSort n))(P d)
                         by (H .)
                         we proved P (CSort n)
(d:C.(clt d (CSort n))(P d))(P (CSort n))
                case CHead : c1:C k:K t:T 
                   the thesis becomes H2:d:C.(clt d (CHead c1 k t))(P d).(P (CHead c1 k t))
                   () by induction hypothesis we know (d:C.(clt d c1)(P d))(P c1)
                      suppose H2d:C.(clt d (CHead c1 k t))(P d)
                         (H_x
                            by (chead_ctail . . .)
ex_3 K C T λh:K.λd:C.λu:T.eq C (CHead c1 k t) (CTail h u d)
                         end of H_x
                         (H3consider H_x
                         we proceed by induction on H3 to prove P (CHead c1 k t)
                            case ex_3_intro : x0:K x1:C x2:T H4:eq C (CHead c1 k t) (CTail x0 x2 x1) 
                               the thesis becomes P (CHead c1 k t)
                                  (H5
                                     we proceed by induction on H4 to prove d:C.(clt d (CTail x0 x2 x1))(P d)
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H2
d:C.(clt d (CTail x0 x2 x1))(P d)
                                  end of H5
                                  by (clt_thead . . .)
                                  we proved clt x1 (CTail x0 x2 x1)
                                  by (H5 . previous)
                                  we proved P x1
                                  by (H0 . previous . .)
                                  we proved P (CTail x0 x2 x1)
                                  by (eq_ind_r . . . previous . H4)
P (CHead c1 k t)
                         we proved P (CHead c1 k t)
H2:d:C.(clt d (CHead c1 k t))(P d).(P (CHead c1 k t))
             we proved (d:C.(clt d c0)(P d))(P c0)
          we proved c0:C.(d:C.(clt d c0)(P d))(P c0)
          by (clt_wf_ind . previous .)
          we proved P c
       we proved 
          P:CProp
            .n:nat.(P (CSort n))
              (c:C.(P c)k:K.t:T.(P (CTail k t c)))c:C.(P c)