DEFINITION C_ind()
TYPE =
       P:CProp
         .n:nat.(P (CSort n))
           (c:C.(P c)k:K.t:T.(P (CHead c k t)))c:C.(P c)
BODY =
        assume PCProp
        suppose Hn:nat.(P (CSort n))
        suppose H1c:C.(P c)k:K.t:T.(P (CHead c k t))
          (aux) by well-founded reasoning we prove c:C.(P c)
          assume cC
             by cases on c we prove P c
                case CSort n:nat 
                   the thesis becomes P (CSort n)
                   by (H .)
P (CSort n)
                case CHead c1:C k:K t:T 
                   the thesis becomes P (CHead c1 k t)
                   by (aux .)
                   we proved P c1
                   by (H1 . previous . .)
P (CHead c1 k t)
             we proved P c
c:C.(P c)
          done
          consider aux
          we proved c:C.(P c)
       we proved 
          P:CProp
            .n:nat.(P (CSort n))
              (c:C.(P c)k:K.t:T.(P (CHead c k t)))c:C.(P c)