
Adding Schematic Abstraction to λP

Ferruccio Guidi

HELM team, DISI, University of Bologna, Italy

ferruccio.guidi@unibo.it

February 28, 2018

1. Propositions as objects vs. propositions as types

• The encoding of logic into typed λ-calculus follows two paradigms:

the so-called “propositions as objects” and “proposition as types”.

Level Propositions as objects Propositions as types

Kind ⋆ universe (o ≡ ⋆)

Type universe (o) assertion (A true) proposition (A ≡ A true)

Object proposition (A) derivation (π) derivation (π)

• Systems pursuing “propositions as objects”: λ→, AUT-68, LF, λP.

Notice that true is a primitive function symbol of type: o → ⋆.

• Systems pursuing “propositions as types”: AUT-QE, System F, CC.

Easier: we build propositions with the framework’s type constructors.

• Nevertheless “propositions as types” requires stronger frameworks,

i.e., conjunction and disjunction have type ⋆ → ⋆ → ⋆ not in λP.
1 Adding Schematic Abstraction to λP Ferruccio Guidi

2. Predicative frameworks allowing propositions as types

• With “propositions as types” we need h.o. quantification of class

(�, ⋆) to represent logical rules with schematic propositional variables.

• A,B ⊢ A ∧ B becomes land i : (∀A : ⋆)(∀B : ⋆)(A → B → A ∧ B)

and the quantification on B is of class (�, ⋆) in λ-Cube terminology.

1. PTS-style impredicative solution: λC.

Add triples (�,�,�) and (�, ⋆, ⋆) to λP.

2. PTS-style predicative solution: henceforth λT (very powerful).

Add triples (�,�,�) and (�, ⋆,�) to λP.

3. PTS-style predicative solution: λQE ≈ AUT-QE (less powerful).

add triples (�,�,△), (�, ⋆,△), (�,△,△), (⋆,△,△) to λP.

4. Refined PTS-style predicative solution: refined λQE ≈ AUT-QE.

Add parameter pairs (�,�), (�, ⋆), (⋆,�), (⋆, ⋆) to λP.

2 Adding Schematic Abstraction to λP Ferruccio Guidi

3. Discussion on the predicative frameworks

• System λT (solution 2) allows to write powerful constructions, i.e.,

logical rules with schematic variables for connectives. Is this useful?

• The quantification (⋆,�,�) of λT can be seen both as internal and

as schematic. Thus the former can precede the latter in constructions.

• Is it always the case that internal quantifications preceding schematic

ones in constructions (rejected in λQE) can be thought as schematic?

• In λT and λQE instantiated assertions live in ⋆ while assertions with

h.o. schematic variables live in � or △, i.e., at a different level.

• Reasonably, de Bruijn’s unified binder [x : α] emerges as a device to

accommodate schematic abstraction in Automath-related languages.

• The refined λ-Cube (solution 4) pursues the syntactic distinction

between internal abstraction (Π, λ) and schematic abstraction (¶, §).

3 Adding Schematic Abstraction to λP Ferruccio Guidi

4. Introducing the system λΥP: a step towards λ∞ ⊕ λP

• Here we are proposing to develop a framework in which λ∞ provides

for the schematic abstraction while λP provides for the internal one.

• In the perspective of the refined λ-Cube we are proposing mainly to

unify ¶ and § in (Υx : α), inspired by [x : α] (differing from Π and λ).

• In the ideal λ∞ ⊕ λP the two subsystems are independent (contrary

to λQE), so schematic and internal abstractions can be mixed in terms.

• By meeting the requirement of independence, we conjecture that our

system can have a simple structure and uniform validity rules like λT.

• The ideal λ∞ ⊕ λP supports constructions like schematic variables

for connectives without the hybrid quantification (⋆,�,�) of λT.

• To start with, we are proposing here the system λΥP that extends

λP with the h.o. schematic abstraction provided by the Υ quantifier.

4 Adding Schematic Abstraction to λP Ferruccio Guidi

5. Syntax and conversion in λΥP

• Our system has the syntax of simplified LF with three levels of terms

(kinds K, families T and objects M) and one category for contexts L.

H , K ::= ⋆ | (Πn : U).K | (Υu :H).K

T , U ::= u | (Πn : U).T | (λn : U).T | (N).T | (Υu :H).T | (U).T

M , N ::= n | (λn : U).M | (N).M | (Υu :H).M | (U).M

L ::= ◦ | L.(n : U) | L.(u :H)

• We add a h.o abstraction (Υu :H) for objects, families and kinds.

We add the corresponding application (U) for objects and families.

• To the refined λ-Cube (Υu :H).T is a ¶ and a § at the same time.

• Moreover we pose that (U).(Υu :H) is a β-redex giving rise to:

L ⊢ (U).(Υu :H).M =β [U/u].M L ⊢ (U).(Υu :H).T =β [U/u].T

5 Adding Schematic Abstraction to λP Ferruccio Guidi

6. Validity in λΥP

• The judgments (LF): ⊢ L ! (L is valid), L ⊢ K ! (K is valid in L),

L ⊢ T : K (T belongs to K in L), L ⊢ M : T (M belongs to T in L).

• Here we omit the validity rules concerning the LF fragment of λΥP.

L ⊢ H ! L.(u :H) ⊢ K !

L ⊢ (Υu :H).K !
1

L ⊢ H ! L.(u :H) ⊢ T : K

L ⊢ (Υu :H).T : (Υu :H).K
2

L ⊢ H ! L.(u :H) ⊢ M : T

L ⊢ (Υu :H).M : (Υu :H).T
3

L ⊢ U : H L ⊢ T : (Υu :H).K

L ⊢ (U).T : [U/u].K
4

L ⊢ U : H L ⊢ M : (Υu :H).T

L ⊢ (U).M : [U/u].T
5

L ⊢ M : T1 L ⊢ T1 =β T2 L ⊢ T2 : (Υu :H).K

L ⊢ M : T2

6
L ⊢ U : ⋆ L.(n : U) ⊢ T : (Υu :H).K

L ⊢ (Πn : U).T : (Υu :H).K
7

• Rules 6 an 7 show that in a PTS for λΥP there is a sort for each

(Υu :H).K. Moreover (Υu :H).T is a (Πu :H).T with Π-reduction.

• In the perspective of λQE, we break the sort △ in a system of sorts

△H,K :� , that are as many as the simple types from one base type.

6 Adding Schematic Abstraction to λP Ferruccio Guidi

7. Validity in λΥP continued

• Note: L ⊢ T : △H,K gives more information on T than L ⊢ T : △ .

• The “start” rules come from LF hence L ⊢ n : T implies L ⊢ T : ⋆,

Therefore n cannot take (Υu :H).M , which is is not a first-class object.

• The ideal λ∞⊕λP must have a “start” rule to remove this limitation.

• Instead L ⊢ u : H implies L ⊢ H ! therefore u can take (Υu :H).T .

• Interesting properties to prove for λΥP include strong normalization

of valid terms. Confluence and safety of reduction should be PTS-like.

• Strong normalization should be reducible to the one of λδ-2, i.e.,

λ→-like, like strong normalization of λC is reducible to the one of λω.

• The ideal λ∞ ⊕ λP must also include the f.o. schematic abstraction

(Υn : U) with which we enable the quantification (⋆,△,△) of λQE.

• It is quite likely that we need to consider the kind (Υn : U).K a sort.

7 Adding Schematic Abstraction to λP Ferruccio Guidi

8. Testing λΥP on the “Grundlagen”

• Statement: any logical framework claiming to support “propositions

as types” must accept a translation of the “Grundlagen der Analysis”.

• Among the realistic fragments of math formalized with “propositions

as types”, the “Grundlagen” does not need very expressive frameworks.

• We took the λProlog version of the “Grundlagen” for CC. We turned

f.o. quantification to (Πn : U) and h.o. quantification to (Υu :H).

• Notice that by so doing, (Πn : U) precedes (Υu :H) in some cases.

• We implemented an efficient validator for λΥP in λProlog, which

operates in the L
β
λ fragment and never unwinds its reduction machine.

• Typical runs of three validators on the ELPI engine (same hardware):

lyp [λΥP] (9.4s), Helena [≈ λδ-3] (35.7s), ALT-0/PTS [CC] (43.7s).

• The interactions of Υ and Π in λΥP should clarify the design of λδ-3.

8 Adding Schematic Abstraction to λP Ferruccio Guidi

References

[1] C. Dunchev, F. Guidi, C. Sacerdoti Coen, and E. Tassi. ELPI: fast,

Embeddable, λProlog Interpreter. In M. Davis, A. Fehnker,

A. McIver, and A. Voronkov, editors, Proceedings of 20th

International Conference on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR-20), volume 9450 of Lecture

Notes in Computer Science, pages 460–468, Berlin, Germany,

December 2015. Springer.

[2] F. Guidi. Verified Representations of Landau’s “Grundlagen” in the

λδ Family and in the Calculus of Constructions. Journal of

Formalized Reasoning, 8(1):93–116, December 2015.

[3] F. Guidi. The Formal System λΥP. Technical Report AMS Acta

5754, University of Bologna, Bologna, Italy, January 2018.

9 Adding Schematic Abstraction to λP Ferruccio Guidi

Thank you

10 Adding Schematic Abstraction to λP Ferruccio Guidi

