Adding Schematic Abstraction to λP Ferruccio Guidi HELM team, DISI, University of Bologna, Italy ferruccio.guidi@unibo.it

February 28, 2018

1. Propositions as objects vs. propositions as types

• The encoding of logic into typed λ -calculus follows two paradigms: the so-called "propositions as objects" and "proposition as types".

Level	Propositions as objects		Propositions as types
Kind	*		universe (o $\equiv \star$)
Type	universe (o)	assertion $(A true)$	proposition $(A \equiv A true)$
Object	proposition (A)	derivation (π)	derivation (π)

- Systems pursuing "propositions as objects": $\lambda \rightarrow$, AUT-68, LF, λP . Notice that *true* is a primitive function symbol of type: $o \rightarrow \star$.
- Systems pursuing "propositions as types": AUT-QE, System F, CC. Easier: we build propositions with the framework's type constructors.
- Nevertheless "propositions as types" requires stronger frameworks, *i.e.*, conjunction and disjunction have type $\star \to \star \to \star$ not in λP .

2. Predicative frameworks allowing propositions as types

- With "propositions as types" we need h.o. quantification of class (\Box, \star) to represent logical rules with schematic propositional variables.
- $A, B \vdash A \land B$ becomes $land_i : (\forall A : \star)(\forall B : \star)(A \to B \to A \land B)$ and the quantification on B is of class (\Box, \star) in λ -Cube terminology.
- 1. PTS-style impredicative solution: λC . Add triples (\Box, \Box, \Box) and (\Box, \star, \star) to λP .
- 2. PTS-style predicative solution: henceforth λT (very powerful). Add triples (\Box, \Box, \Box) and (\Box, \star, \Box) to λP .
- 3. PTS-style predicative solution: $\lambda QE \approx AUT-QE$ (less powerful). add triples $(\Box, \Box, \Delta), (\Box, \star, \Delta), (\Box, \Delta, \Delta), (\star, \Delta, \Delta)$ to λP .
- 4. Refined PTS-style predicative solution: refined $\lambda QE \approx AUT-QE$. Add parameter pairs $(\Box, \Box), (\Box, \star), (\star, \Box), (\star, \star)$ to λP .

3. Discussion on the predicative frameworks

- System λT (solution 2) allows to write powerful constructions, *i.e.*, logical rules with schematic variables for connectives. Is this useful?
- The quantification (\star, \Box, \Box) of λT can be seen both as internal and as schematic. Thus the former can precede the latter in constructions.
- Is it always the case that internal quantifications preceding schematic ones in constructions (rejected in λQE) can be thought as schematic?
- In λT and λQE instantiated assertions live in \star while assertions with h.o. schematic variables live in \Box or \triangle , *i.e.*, at a different level.
- Reasonably, de Bruijn's unified binder $[x : \alpha]$ emerges as a device to accommodate schematic abstraction in Automath-related languages.
- The refined λ -Cube (solution 4) pursues the syntactic distinction between internal abstraction (Π, λ) and schematic abstraction (\P, \S) .

4. Introducing the system $\lambda \Upsilon P$: a step towards $\lambda_{\infty} \oplus \lambda P$

- Here we are proposing to develop a framework in which λ_{∞} provides for the schematic abstraction while λP provides for the internal one.
- In the perspective of the refined λ -Cube we are proposing mainly to unify \P and \S in $(\Upsilon x : \alpha)$, inspired by $[x : \alpha]$ (differing from Π and λ).
- In the ideal $\lambda_{\infty} \oplus \lambda P$ the two subsystems are independent (contrary to λQE), so schematic and internal abstractions can be mixed in terms.
- By meeting the requirement of independence, we conjecture that our system can have a simple structure and uniform validity rules like λT .
- The ideal $\lambda_{\infty} \oplus \lambda P$ supports constructions like schematic variables for connectives without the hybrid quantification (\star, \Box, \Box) of λT .
- To start with, we are proposing here the system $\lambda \Upsilon P$ that extends λP with the h.o. schematic abstraction provided by the Υ quantifier.

5. Syntax and conversion in $\lambda \Upsilon P$

• Our system has the syntax of simplified LF with three levels of terms (kinds K, families T and objects M) and one category for contexts L.

$$\begin{array}{l} H, K ::= \star \mid (\Pi n : U).K \mid (\Upsilon u : H).K \\ T, U ::= u \mid (\Pi n : U).T \mid (\lambda n : U).T \mid (N).T \mid (\Upsilon u : H).T \mid (U).T \\ M, N ::= n \mid (\lambda n : U).M \mid (N).M \mid (\Upsilon u : H).M \mid (U).M \\ L ::= \circ \mid L.(n : U) \mid L.(u : H) \end{array}$$

- We add a h.o abstraction $(\Upsilon u : H)$ for objects, families and kinds. We add the corresponding application (U) for objects and families.
- To the refined λ -Cube $(\Upsilon u : H) \cdot T$ is a \P and a \S at the same time.
- Moreover we pose that $(U).(\Upsilon u : H)$ is a β -redex giving rise to:

 $L \vdash (U).(\Upsilon u:H).M =_{\beta} [U/u].M \qquad L \vdash (U).(\Upsilon u:H).T =_{\beta} [U/u].T$

6. Validity in $\lambda \Upsilon P$

- The judgments (LF): $\vdash L !$ (*L* is valid), $L \vdash K !$ (*K* is valid in *L*), $L \vdash T : K$ (*T* belongs to *K* in *L*), $L \vdash M : T$ (*M* belongs to *T* in *L*).
- Here we omit the validity rules concerning the LF fragment of $\lambda \Upsilon P$.

 $\frac{L \vdash H \mid L.(u:H) \vdash K \mid}{L \vdash (\Upsilon u:H).K \mid} 1 \qquad \frac{L \vdash H \mid L.(u:H) \vdash T:K}{L \vdash (\Upsilon u:H).T : (\Upsilon u:H).K} 2 \qquad \frac{L \vdash H \mid L.(u:H) \vdash M:T}{L \vdash (\Upsilon u:H).M : (\Upsilon u:H).T} 3$ $\frac{L \vdash U:H \mid L \vdash T: (\Upsilon u:H).K}{L \vdash (U).T : [U/u].K} 4 \qquad \frac{L \vdash U:H \mid L \vdash M: (\Upsilon u:H).T}{L \vdash (U).M : [U/u].T} 5$ $\frac{L \vdash M:T_1 \mid L \vdash T_1 =_{\beta} T_2 \mid L \vdash T_2: (\Upsilon u:H).K}{L \vdash M:T_2} 6 \qquad \frac{L \vdash U: \star L.(n:U) \vdash T: (\Upsilon u:H).K}{L \vdash (\Pi n:U).T: (\Upsilon u:H).K} 7$

- Rules 6 an 7 show that in a PTS for $\lambda \Upsilon P$ there is a sort for each $(\Upsilon u : H).K$. Moreover $(\Upsilon u : H).T$ is a $(\Pi u : H).T$ with Π -reduction.
- In the perspective of λQE , we break the sort Δ in a system of sorts $\Delta_{H,K} : \Box$, that are as many as the simple types from one base type.

7. Validity in $\lambda \Upsilon P$ continued

- Note: $L \vdash T : \triangle_{H,K}$ gives more information on T than $L \vdash T : \triangle$.
- The "start" rules come from LF hence $L \vdash n : T$ implies $L \vdash T : \star$, Therefore *n* cannot take $(\Upsilon u : H) \cdot M$, which is is not a first-class object.
- The ideal $\lambda_{\infty} \oplus \lambda^{\text{P}}$ must have a "start" rule to remove this limitation.
- Instead $L \vdash u : H$ implies $L \vdash H$! therefore u can take $(\Upsilon u : H) \cdot T$.
- Interesting properties to prove for $\lambda \Upsilon P$ include strong normalization of valid terms. Confluence and safety of reduction should be PTS-like.
- Strong normalization should be reducible to the one of $\lambda\delta$ -2, *i.e.*, $\lambda \rightarrow$ -like, like strong normalization of λC is reducible to the one of $\lambda \omega$.
- The ideal $\lambda_{\infty} \oplus \lambda P$ must also include the f.o. schematic abstraction $(\Upsilon n : U)$ with which we enable the quantification (\star, Δ, Δ) of λQE .
- It is quite likely that we need to consider the kind $(\Upsilon n : U).K$ a sort.

8. Testing $\lambda \Upsilon P$ on the "Grundlagen"

- Statement: any logical framework claiming to support "propositions as types" must accept a translation of the "Grundlagen der Analysis".
- Among the realistic fragments of math formalized with "propositions as types", the "Grundlagen" does not need very expressive frameworks.
- We took the λ Prolog version of the "Grundlagen" for CC. We turned f.o. quantification to $(\Pi n : U)$ and h.o. quantification to $(\Upsilon u : H)$.
- Notice that by so doing, $(\Pi n : U)$ precedes $(\Upsilon u : H)$ in some cases.
- We implemented an efficient validator for $\lambda \Upsilon P$ in $\lambda Prolog$, which operates in the $\mathcal{L}^{\beta}_{\lambda}$ fragment and never unwinds its reduction machine.
- Typical runs of three validators on the ELPI engine (same hardware): lyp $[\lambda \Upsilon P]$ (9.4s), Helena $[\approx \lambda \delta$ -3] (35.7s), ALT-0/PTS [CC] (43.7s).
- The interactions of Υ and Π in $\lambda \Upsilon P$ should clarify the design of $\lambda \delta$ -3.

References

[1] C. Dunchev, F. Guidi, C. Sacerdoti Coen, and E. Tassi. ELPI: fast, Embeddable, λProlog Interpreter. In M. Davis, A. Fehnker,
A. McIver, and A. Voronkov, editors, *Proceedings of 20th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-20)*, volume 9450 of *Lecture Notes in Computer Science*, pages 460–468, Berlin, Germany, December 2015. Springer.

- [2] F. Guidi. Verified Representations of Landau's "Grundlagen" in the λδ Family and in the Calculus of Constructions. Journal of Formalized Reasoning, 8(1):93–116, December 2015.
- [3] F. Guidi. The Formal System $\lambda \Upsilon P$. Technical Report AMS Acta 5754, University of Bologna, Bologna, Italy, January 2018.

Thank you