DEFINITION ty3_gen_cast()
TYPE =
       g:G
         .c:C
           .t1:T
             .t2:T
               .x:T
                 .ty3 g c (THead (Flat Cast) t2 t1) x
                   ex3 T λt0:T.pc3 c (THead (Flat Cast) t0 t2) x λ:T.ty3 g c t1 t2 λt0:T.ty3 g c t2 t0
BODY =
        assume gG
        assume cC
        assume t1T
        assume t2T
        assume xT
        suppose Hty3 g c (THead (Flat Cast) t2 t1) x
           assume yT
           suppose H0ty3 g c y x
             we proceed by induction on H0 to prove 
                eq T y (THead (Flat Cast) t2 t1)
                  ex3 T λt3:T.pc3 c (THead (Flat Cast) t3 t2) x λ:T.ty3 g c t1 t2 λt3:T.ty3 g c t2 t3
                case ty3_conv : c0:C t0:T t:T :ty3 g c0 t0 t u:T t3:T H3:ty3 g c0 u t3 H5:pc3 c0 t3 t0 
                   the thesis becomes 
                   H6:eq T u (THead (Flat Cast) t2 t1)
                     .ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) t0 λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                   () by induction hypothesis we know 
                      eq T t0 (THead (Flat Cast) t2 t1)
                        ex3 T λt3:T.pc3 c0 (THead (Flat Cast) t3 t2) t λ:T.ty3 g c0 t1 t2 λt3:T.ty3 g c0 t2 t3
                   (H4) by induction hypothesis we know 
                      eq T u (THead (Flat Cast) t2 t1)
                        ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) t3 λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                      suppose H6eq T u (THead (Flat Cast) t2 t1)
                         (H7
                            by (f_equal . . . . . H6)
                            we proved eq T u (THead (Flat Cast) t2 t1)
eq T (λe:T.e u) (λe:T.e (THead (Flat Cast) t2 t1))
                         end of H7
                         (H8
                            we proceed by induction on H7 to prove 
                               eq T (THead (Flat Cast) t2 t1) (THead (Flat Cast) t2 t1)
                                 ex3 T λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) t3 λ:T.ty3 g c0 t1 t2 λt5:T.ty3 g c0 t2 t5
                               case refl_equal : 
                                  the thesis becomes the hypothesis H4

                               eq T (THead (Flat Cast) t2 t1) (THead (Flat Cast) t2 t1)
                                 ex3 T λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) t3 λ:T.ty3 g c0 t1 t2 λt5:T.ty3 g c0 t2 t5
                         end of H8
                         (H10
                            by (refl_equal . .)
                            we proved eq T (THead (Flat Cast) t2 t1) (THead (Flat Cast) t2 t1)
                            by (H8 previous)
ex3 T λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) t3 λ:T.ty3 g c0 t1 t2 λt5:T.ty3 g c0 t2 t5
                         end of H10
                         we proceed by induction on H10 to prove ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) t0 λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                            case ex3_intro : x0:T H11:pc3 c0 (THead (Flat Cast) x0 t2) t3 H12:ty3 g c0 t1 t2 H13:ty3 g c0 t2 x0 
                               the thesis becomes ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) t0 λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                                  by (pc3_t . . . H11 . H5)
                                  we proved pc3 c0 (THead (Flat Cast) x0 t2) t0
                                  by (ex3_intro . . . . . previous H12 H13)
ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) t0 λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                         we proved ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) t0 λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4

                         H6:eq T u (THead (Flat Cast) t2 t1)
                           .ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) t0 λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                case ty3_sort : c0:C m:nat 
                   the thesis becomes 
                   H1:eq T (TSort m) (THead (Flat Cast) t2 t1)
                     .ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (TSort (next g m)) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                      suppose H1eq T (TSort m) (THead (Flat Cast) t2 t1)
                         (H2
                            we proceed by induction on H1 to prove 
                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort True
                                 | TLRef False
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TSort m OF
                                      TSort True
                                    | TLRef False
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TSort m OF
                                            TSort True
                                          | TLRef False
                                          | THead   False

                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort True
                                 | TLRef False
                                 | THead   False
                         end of H2
                         consider H2
                         we proved 
                            <λ:T.Prop>
                              CASE THead (Flat Cast) t2 t1 OF
                                TSort True
                              | TLRef False
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (TSort (next g m)) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                         we proved ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (TSort (next g m)) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0

                         H1:eq T (TSort m) (THead (Flat Cast) t2 t1)
                           .ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (TSort (next g m)) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                case ty3_abbr : n:nat c0:C d:C u:T :getl n c0 (CHead d (Bind Abbr) u) t:T :ty3 g d u t 
                   the thesis becomes 
                   H4:eq T (TLRef n) (THead (Flat Cast) t2 t1)
                     .ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (lift (S n) O t) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                   () by induction hypothesis we know 
                      eq T u (THead (Flat Cast) t2 t1)
                        ex3 T λt0:T.pc3 d (THead (Flat Cast) t0 t2) t λ:T.ty3 g d t1 t2 λt0:T.ty3 g d t2 t0
                      suppose H4eq T (TLRef n) (THead (Flat Cast) t2 t1)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TLRef n OF
                                      TSort False
                                    | TLRef True
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TLRef n OF
                                            TSort False
                                          | TLRef True
                                          | THead   False

                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                         end of H5
                         consider H5
                         we proved 
                            <λ:T.Prop>
                              CASE THead (Flat Cast) t2 t1 OF
                                TSort False
                              | TLRef True
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (lift (S n) O t) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                         we proved ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (lift (S n) O t) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0

                         H4:eq T (TLRef n) (THead (Flat Cast) t2 t1)
                           .ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (lift (S n) O t) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                case ty3_abst : n:nat c0:C d:C u:T :getl n c0 (CHead d (Bind Abst) u) t:T :ty3 g d u t 
                   the thesis becomes 
                   H4:eq T (TLRef n) (THead (Flat Cast) t2 t1)
                     .ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (lift (S n) O u) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                   () by induction hypothesis we know 
                      eq T u (THead (Flat Cast) t2 t1)
                        ex3 T λt0:T.pc3 d (THead (Flat Cast) t0 t2) t λ:T.ty3 g d t1 t2 λt0:T.ty3 g d t2 t0
                      suppose H4eq T (TLRef n) (THead (Flat Cast) t2 t1)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TLRef n OF
                                      TSort False
                                    | TLRef True
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TLRef n OF
                                            TSort False
                                          | TLRef True
                                          | THead   False

                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                         end of H5
                         consider H5
                         we proved 
                            <λ:T.Prop>
                              CASE THead (Flat Cast) t2 t1 OF
                                TSort False
                              | TLRef True
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (lift (S n) O u) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                         we proved ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (lift (S n) O u) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0

                         H4:eq T (TLRef n) (THead (Flat Cast) t2 t1)
                           .ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (lift (S n) O u) λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                case ty3_bind : c0:C u:T t:T :ty3 g c0 u t b:B t0:T t3:T :ty3 g (CHead c0 (Bind b) u) t0 t3 
                   the thesis becomes 
                   H5:eq T (THead (Bind b) u t0) (THead (Flat Cast) t2 t1)
                     .ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) (THead (Bind b) u t3) λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                   () by induction hypothesis we know 
                      eq T u (THead (Flat Cast) t2 t1)
                        ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) t λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                   () by induction hypothesis we know 
                      eq T t0 (THead (Flat Cast) t2 t1)
                        (ex3
                             T
                             λt4:T.pc3 (CHead c0 (Bind b) u) (THead (Flat Cast) t4 t2) t3
                             λ:T.ty3 g (CHead c0 (Bind b) u) t1 t2
                             λt4:T.ty3 g (CHead c0 (Bind b) u) t2 t4)
                      suppose H5eq T (THead (Bind b) u t0) (THead (Flat Cast) t2 t1)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Bind b) u t0 OF
                                      TSort False
                                    | TLRef False
                                    | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Bind b) u t0 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False

                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE THead (Flat Cast) t2 t1 OF
                                TSort False
                              | TLRef False
                              | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) (THead (Bind b) u t3) λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                         we proved ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) (THead (Bind b) u t3) λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4

                         H5:eq T (THead (Bind b) u t0) (THead (Flat Cast) t2 t1)
                           .ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) (THead (Bind b) u t3) λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                case ty3_appl : c0:C w:T u:T :ty3 g c0 w u v:T t:T :ty3 g c0 v (THead (Bind Abst) u t) 
                   the thesis becomes 
                   H5:eq T (THead (Flat Appl) w v) (THead (Flat Cast) t2 t1)
                     .ex3
                       T
                       λt0:T
                         .pc3
                           c0
                           THead (Flat Cast) t0 t2
                           THead (Flat Appl) w (THead (Bind Abst) u t)
                       λ:T.ty3 g c0 t1 t2
                       λt0:T.ty3 g c0 t2 t0
                   () by induction hypothesis we know 
                      eq T w (THead (Flat Cast) t2 t1)
                        ex3 T λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) u λ:T.ty3 g c0 t1 t2 λt0:T.ty3 g c0 t2 t0
                   () by induction hypothesis we know 
                      eq T v (THead (Flat Cast) t2 t1)
                        (ex3
                             T
                             λt0:T.pc3 c0 (THead (Flat Cast) t0 t2) (THead (Bind Abst) u t)
                             λ:T.ty3 g c0 t1 t2
                             λt0:T.ty3 g c0 t2 t0)
                      suppose H5eq T (THead (Flat Appl) w v) (THead (Flat Cast) t2 t1)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  
                                       <λ:K.Prop>
                                         CASE k OF
                                           Bind False
                                         | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Appl) w v OF
                                      TSort False
                                    | TLRef False
                                    | THead k  
                                          <λ:K.Prop>
                                            CASE k OF
                                              Bind False
                                            | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) w v OF
                                            TSort False
                                          | TLRef False
                                          | THead k  
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind False
                                                  | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse

                               <λ:T.Prop>
                                 CASE THead (Flat Cast) t2 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  
                                       <λ:K.Prop>
                                         CASE k OF
                                           Bind False
                                         | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE THead (Flat Cast) t2 t1 OF
                                TSort False
                              | TLRef False
                              | THead k  
                                    <λ:K.Prop>
                                      CASE k OF
                                        Bind False
                                      | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            ex3
                              T
                              λt0:T
                                .pc3
                                  c0
                                  THead (Flat Cast) t0 t2
                                  THead (Flat Appl) w (THead (Bind Abst) u t)
                              λ:T.ty3 g c0 t1 t2
                              λt0:T.ty3 g c0 t2 t0
                         we proved 
                            ex3
                              T
                              λt0:T
                                .pc3
                                  c0
                                  THead (Flat Cast) t0 t2
                                  THead (Flat Appl) w (THead (Bind Abst) u t)
                              λ:T.ty3 g c0 t1 t2
                              λt0:T.ty3 g c0 t2 t0

                         H5:eq T (THead (Flat Appl) w v) (THead (Flat Cast) t2 t1)
                           .ex3
                             T
                             λt0:T
                               .pc3
                                 c0
                                 THead (Flat Cast) t0 t2
                                 THead (Flat Appl) w (THead (Bind Abst) u t)
                             λ:T.ty3 g c0 t1 t2
                             λt0:T.ty3 g c0 t2 t0
                case ty3_cast : c0:C t0:T t3:T H1:ty3 g c0 t0 t3 t4:T H3:ty3 g c0 t3 t4 
                   the thesis becomes 
                   H5:eq T (THead (Flat Cast) t3 t0) (THead (Flat Cast) t2 t1)
                     .ex3
                       T
                       λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) (THead (Flat Cast) t4 t3)
                       λ:T.ty3 g c0 t1 t2
                       λt5:T.ty3 g c0 t2 t5
                   (H2) by induction hypothesis we know 
                      eq T t0 (THead (Flat Cast) t2 t1)
                        ex3 T λt4:T.pc3 c0 (THead (Flat Cast) t4 t2) t3 λ:T.ty3 g c0 t1 t2 λt4:T.ty3 g c0 t2 t4
                   (H4) by induction hypothesis we know 
                      eq T t3 (THead (Flat Cast) t2 t1)
                        ex3 T λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) t4 λ:T.ty3 g c0 t1 t2 λt5:T.ty3 g c0 t2 t5
                      suppose H5eq T (THead (Flat Cast) t3 t0) (THead (Flat Cast) t2 t1)
                         (H6
                            by (f_equal . . . . . H5)
                            we proved 
                               eq
                                 T
                                 <λ:T.T> CASE THead (Flat Cast) t3 t0 OF TSort t3 | TLRef t3 | THead  t t
                                 <λ:T.T> CASE THead (Flat Cast) t2 t1 OF TSort t3 | TLRef t3 | THead  t t

                               eq
                                 T
                                 λe:T.<λ:T.T> CASE e OF TSort t3 | TLRef t3 | THead  t t
                                   THead (Flat Cast) t3 t0
                                 λe:T.<λ:T.T> CASE e OF TSort t3 | TLRef t3 | THead  t t
                                   THead (Flat Cast) t2 t1
                         end of H6
                         (h1
                            (H7
                               by (f_equal . . . . . H5)
                               we proved 
                                  eq
                                    T
                                    <λ:T.T> CASE THead (Flat Cast) t3 t0 OF TSort t0 | TLRef t0 | THead   tt
                                    <λ:T.T> CASE THead (Flat Cast) t2 t1 OF TSort t0 | TLRef t0 | THead   tt

                                  eq
                                    T
                                    λe:T.<λ:T.T> CASE e OF TSort t0 | TLRef t0 | THead   tt
                                      THead (Flat Cast) t3 t0
                                    λe:T.<λ:T.T> CASE e OF TSort t0 | TLRef t0 | THead   tt
                                      THead (Flat Cast) t2 t1
                            end of H7
                            suppose H8eq T t3 t2
                               (H10
                                  we proceed by induction on H8 to prove ty3 g c0 t2 t4
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H3
ty3 g c0 t2 t4
                               end of H10
                               (H11
                                  we proceed by induction on H8 to prove 
                                     eq T t0 (THead (Flat Cast) t2 t1)
                                       ex3 T λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) t2 λ:T.ty3 g c0 t1 t2 λt5:T.ty3 g c0 t2 t5
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H2

                                     eq T t0 (THead (Flat Cast) t2 t1)
                                       ex3 T λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) t2 λ:T.ty3 g c0 t1 t2 λt5:T.ty3 g c0 t2 t5
                               end of H11
                               (H12
                                  we proceed by induction on H8 to prove ty3 g c0 t0 t2
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H1
ty3 g c0 t0 t2
                               end of H12
                               (H14
                                  consider H7
                                  we proved 
                                     eq
                                       T
                                       <λ:T.T> CASE THead (Flat Cast) t3 t0 OF TSort t0 | TLRef t0 | THead   tt
                                       <λ:T.T> CASE THead (Flat Cast) t2 t1 OF TSort t0 | TLRef t0 | THead   tt
                                  that is equivalent to eq T t0 t1
                                  we proceed by induction on the previous result to prove ty3 g c0 t1 t2
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H12
ty3 g c0 t1 t2
                               end of H14
                               by (pc3_refl . .)
                               we proved pc3 c0 (THead (Flat Cast) t4 t2) (THead (Flat Cast) t4 t2)
                               by (ex3_intro . . . . . previous H14 H10)
                               we proved 
                                  ex3
                                    T
                                    λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) (THead (Flat Cast) t4 t2)
                                    λ:T.ty3 g c0 t1 t2
                                    λt5:T.ty3 g c0 t2 t5
                               by (eq_ind_r . . . previous . H8)
                               we proved 
                                  ex3
                                    T
                                    λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) (THead (Flat Cast) t4 t3)
                                    λ:T.ty3 g c0 t1 t2
                                    λt5:T.ty3 g c0 t2 t5

                               eq T t3 t2
                                 (ex3
                                      T
                                      λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) (THead (Flat Cast) t4 t3)
                                      λ:T.ty3 g c0 t1 t2
                                      λt5:T.ty3 g c0 t2 t5)
                         end of h1
                         (h2
                            consider H6
                            we proved 
                               eq
                                 T
                                 <λ:T.T> CASE THead (Flat Cast) t3 t0 OF TSort t3 | TLRef t3 | THead  t t
                                 <λ:T.T> CASE THead (Flat Cast) t2 t1 OF TSort t3 | TLRef t3 | THead  t t
eq T t3 t2
                         end of h2
                         by (h1 h2)
                         we proved 
                            ex3
                              T
                              λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) (THead (Flat Cast) t4 t3)
                              λ:T.ty3 g c0 t1 t2
                              λt5:T.ty3 g c0 t2 t5

                         H5:eq T (THead (Flat Cast) t3 t0) (THead (Flat Cast) t2 t1)
                           .ex3
                             T
                             λt5:T.pc3 c0 (THead (Flat Cast) t5 t2) (THead (Flat Cast) t4 t3)
                             λ:T.ty3 g c0 t1 t2
                             λt5:T.ty3 g c0 t2 t5
             we proved 
                eq T y (THead (Flat Cast) t2 t1)
                  ex3 T λt3:T.pc3 c (THead (Flat Cast) t3 t2) x λ:T.ty3 g c t1 t2 λt3:T.ty3 g c t2 t3
          we proved 
             y:T
               .ty3 g c y x
                 (eq T y (THead (Flat Cast) t2 t1)
                      ex3 T λt3:T.pc3 c (THead (Flat Cast) t3 t2) x λ:T.ty3 g c t1 t2 λt3:T.ty3 g c t2 t3)
          by (insert_eq . . . . previous H)
          we proved ex3 T λt0:T.pc3 c (THead (Flat Cast) t0 t2) x λ:T.ty3 g c t1 t2 λt0:T.ty3 g c t2 t0
       we proved 
          g:G
            .c:C
              .t1:T
                .t2:T
                  .x:T
                    .ty3 g c (THead (Flat Cast) t2 t1) x
                      ex3 T λt0:T.pc3 c (THead (Flat Cast) t0 t2) x λ:T.ty3 g c t1 t2 λt0:T.ty3 g c t2 t0